File size: 3,177 Bytes
a2412e9
69c8604
 
 
 
 
 
 
 
 
a2412e9
 
69c8604
 
a2412e9
69c8604
a2412e9
7b4ea88
69c8604
 
 
 
 
 
 
a2412e9
69c8604
a2412e9
69c8604
a2412e9
69c8604
a2412e9
69c8604
a2412e9
69c8604
a2412e9
69c8604
a2412e9
69c8604
a2412e9
69c8604
a2412e9
69c8604
 
 
 
 
 
 
 
a2412e9
69c8604
a2412e9
69c8604
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a2412e9
 
 
69c8604
a2412e9
69c8604
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
---
license: apache-2.0
base_model: agemagician/mlong-t5-tglobal-base
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: mlong-t5-tglobal-base
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# mlong-t5-tglobal-base

This model is a fine-tuned version of [agemagician/mlong-t5-tglobal-base](https://huggingface.co/agemagician/mlong-t5-tglobal-base) on an HeSum dataset.
It achieves the following results on the evaluation set:
- Loss: 2.1091
- Rouge1: 31.6099
- Rouge2: 12.9182
- Rougel: 23.8053
- Rougelsum: 25.5362
- Gen Len: 59.758

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 1
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Rouge1  | Rouge2  | RougeL  | RougeLSum |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|
| No log        | 1.0   | 500   | 2.2709          | 20.5043 | 8.1518  | 16.9526 | 17.5001   |
| 2.8714        | 2.0   | 1000  | 2.2022          | 21.4051 | 8.7445  | 17.7534 | 18.3191   |
| 2.8714        | 3.0   | 1500  | 2.1608          | 21.6609 | 9.1753  | 18.0374 | 18.6176   |
| 2.5137        | 4.0   | 2000  | 2.1555          | 21.6818 | 9.1814  | 18.0382 | 18.6198   |
| 2.5137        | 5.0   | 2500  | 2.1462          | 21.9708 | 9.2033  | 18.3919 | 18.9535   |
| 2.3717        | 6.0   | 3000  | 2.1258          | 22.0583 | 9.2987  | 18.4379 | 19.0322   |
| 2.3717        | 7.0   | 3500  | 2.1278          | 21.8245 | 9.0474  | 18.1979 | 18.8038   |
| 2.2633        | 8.0   | 4000  | 2.1207          | 21.6273 | 8.8847  | 18.024  | 18.6049   |
| 2.2633        | 9.0   | 4500  | 2.1180          | 22.2004 | 9.6253  | 18.6373 | 19.1721   |
| 2.1886        | 10.0  | 5000  | 2.1220          | 22.1619 | 9.6206  | 18.5069 | 19.0856   |
| 2.1886        | 11.0  | 5500  | 2.1161          | 22.1518 | 9.4522  | 18.4695 | 19.0552   |
| 2.1144        | 12.0  | 6000  | 2.1103          | 22.0395 | 9.4185  | 18.4314 | 19.0305   |
| 2.1144        | 13.0  | 6500  | 2.1150          | 22.2404 | 9.4722  | 18.5482 | 19.1747   |
| 2.054         | 14.0  | 7000  | 2.1091          | 22.1466 | 9.3434  | 18.3443 | 18.9233   |
| 2.0526        | 15.0  | 8000  | 2.1580          | 30.4149 | 2.0774  | 22.9493 | 24.4478   |
| 2.1236        | 16.0  | 16000 | 2.1621          | 31.3101 | 13.3237 | 23.8249 | 25.526    |
| 2.0776        | 17.0  | 24000 | 2.1607          | 30.9902 | 12.3753 | 23.0243 | 24.8308   |
| 1.9843        | 18.0  | 32000 | 2.1553          | 32.0603 | 13.4985 | 24.0775 | 25.9692   |



### Framework versions

- Transformers 4.38.2
- Pytorch 1.13.1+cu117
- Datasets 2.18.0
- Tokenizers 0.15.2