File size: 1,244 Bytes
cd9a0ff 5032567 b9e2c6a 550983f cd9a0ff 5032567 b7ffc3e 5032567 b9e2c6a 5032567 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 |
---
language:
- en
tags:
- Sentence Similarity
- feature-extraction
datasets:
- biu-nlp/abstract-sim
---
A model for mapping abstract sentence descriptions to sentences that fit the descriptions. Trained on Wikipedia. Use ```load_finetuned_model``` to load the query and sentence encoder, and ```encode_batch()``` to encode a sentence with the model.
```python
from transformers import AutoTokenizer, AutoModel
import torch
def load_finetuned_model():
sentence_encoder = AutoModel.from_pretrained("biu-nlp/abstract-sim-sentence")
query_encoder = AutoModel.from_pretrained("biu-nlp/abstract-sim-query")
tokenizer = AutoTokenizer.from_pretrained("biu-nlp/abstract-sim-sentence")
return tokenizer, query_encoder, sentence_encoder
def encode_batch(model, tokenizer, sentences, device):
input_ids = tokenizer(sentences, padding=True, max_length=512, truncation=True, return_tensors="pt",
add_special_tokens=True).to(device)
features = model(**input_ids)[0]
features = torch.sum(features[:,1:,:] * input_ids["attention_mask"][:,1:].unsqueeze(-1), dim=1) / torch.clamp(torch.sum(input_ids["attention_mask"][:,1:], dim=1, keepdims=True), min=1e-9)
return features
``` |