ravfogs commited on
Commit
b98460f
·
1 Parent(s): bf4a79a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +28 -0
README.md CHANGED
@@ -1,3 +1,31 @@
1
  ---
2
  license: cc-by-3.0
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: cc-by-3.0
3
+ language:
4
+ - en
5
  ---
6
+
7
+ A model for mapping abstract sentence descriptions to sentences that fit the descriptions. Use ```load_finetuned_model``` to load the query and sentence encoder, and ```encode_batch()``` to encode a sentence with the model.
8
+
9
+ ```python
10
+
11
+ from transformers import AutoTokenizer, AutoModel
12
+ import torch
13
+
14
+ def load_finetuned_model():
15
+
16
+
17
+ sentence_encoder = AutoModel.from_pretrained("ravfogs/description-transformer-mpnet-wiki-sentence-encoder")
18
+ query_encoder = AutoModel.from_pretrained("ravfogs/description-transformer-mpnet-wiki-query-encoder")
19
+ tokenizer = AutoTokenizer.from_pretrained("ravfogs/description-transformer-mpnet-wiki-sentence-encoder")
20
+
21
+ return tokenizer, query_encoder, sentence_encoder
22
+
23
+
24
+ def encode_batch(model, tokenizer, sentences, device):
25
+ input_ids = tokenizer(sentences, padding=True, max_length=512, truncation=True, return_tensors="pt",
26
+ add_special_tokens=True).to(device)
27
+ features = model(**input_ids)[0]
28
+ features = torch.sum(features[:,1:,:] * input_ids["attention_mask"][:,1:].unsqueeze(-1), dim=1) / torch.clamp(torch.sum(input_ids["attention_mask"][:,1:], dim=1, keepdims=True), min=1e-9)
29
+ return features
30
+
31
+ ```