bennexx commited on
Commit
33ea441
·
verified ·
1 Parent(s): 5efa696

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +15 -14
README.md CHANGED
@@ -11,20 +11,6 @@ This is a text classifier for assigning a [JLPT level](https://www.jlpt.jp/e/abo
11
  A pre-trained [cl-tohoku-bert-japanese-v3](https://huggingface.co/cl-tohoku/bert-base-japanese-v3) is finetuned on ~5000k labeled sentences obtained from language learning websites.
12
  Performance on same distribution data is good.
13
 
14
- ```
15
- precision recall f1-score support
16
- N5 0.62 0.66 0.64 145
17
- N4 0.34 0.36 0.35 143
18
- N3 0.33 0.67 0.45 197
19
- N2 0.26 0.20 0.23 192
20
- N1 0.59 0.08 0.15 202
21
- accuracy 0.38 879
22
- macro avg 0.43 0.39 0.36 879
23
- weighted avg 0.42 0.38 0.34 879
24
- ```
25
-
26
- But on test data consisting of official JLPT material it is not so good.
27
-
28
  ```
29
  precision recall f1-score support
30
  N5 0.88 0.88 0.88 25
@@ -39,4 +25,19 @@ weighted avg 0.85 0.84 0.84 260
39
 
40
 
41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42
  Still, it can give a ballpark estimation of sentence difficulty, altough not very precise.
 
11
  A pre-trained [cl-tohoku-bert-japanese-v3](https://huggingface.co/cl-tohoku/bert-base-japanese-v3) is finetuned on ~5000k labeled sentences obtained from language learning websites.
12
  Performance on same distribution data is good.
13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14
  ```
15
  precision recall f1-score support
16
  N5 0.88 0.88 0.88 25
 
25
 
26
 
27
 
28
+ But on test data consisting of official JLPT material it is not so good.
29
+ ```
30
+ precision recall f1-score support
31
+ N5 0.62 0.66 0.64 145
32
+ N4 0.34 0.36 0.35 143
33
+ N3 0.33 0.67 0.45 197
34
+ N2 0.26 0.20 0.23 192
35
+ N1 0.59 0.08 0.15 202
36
+ accuracy 0.38 879
37
+ macro avg 0.43 0.39 0.36 879
38
+ weighted avg 0.42 0.38 0.34 879
39
+ ```
40
+
41
+
42
+
43
  Still, it can give a ballpark estimation of sentence difficulty, altough not very precise.