--- license: mit base_model: pdelobelle/robbert-v2-dutch-base tags: - generated_from_trainer model-index: - name: robbert-v2-dutch-base-finetuned-emotion-arousal results: [] --- # robbert-v2-dutch-base-finetuned-emotion-arousal This model is a fine-tuned version of [pdelobelle/robbert-v2-dutch-base](https://huggingface.co/pdelobelle/robbert-v2-dutch-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0230 - Rmse: 0.1517 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rmse | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.0581 | 1.0 | 25 | 0.0349 | 0.1868 | | 0.0355 | 2.0 | 50 | 0.0340 | 0.1845 | | 0.0295 | 3.0 | 75 | 0.0271 | 0.1645 | | 0.0288 | 4.0 | 100 | 0.0279 | 0.1670 | | 0.0277 | 5.0 | 125 | 0.0316 | 0.1777 | | 0.0254 | 6.0 | 150 | 0.0263 | 0.1620 | | 0.0193 | 7.0 | 175 | 0.0247 | 0.1571 | | 0.0173 | 8.0 | 200 | 0.0304 | 0.1745 | | 0.0179 | 9.0 | 225 | 0.0239 | 0.1547 | | 0.0149 | 10.0 | 250 | 0.0244 | 0.1563 | | 0.0134 | 11.0 | 275 | 0.0248 | 0.1576 | | 0.0113 | 12.0 | 300 | 0.0256 | 0.1601 | | 0.0112 | 13.0 | 325 | 0.0265 | 0.1627 | | 0.0114 | 14.0 | 350 | 0.0299 | 0.1730 | | 0.0111 | 15.0 | 375 | 0.0268 | 0.1638 | | 0.0098 | 16.0 | 400 | 0.0256 | 0.1599 | | 0.009 | 17.0 | 425 | 0.0252 | 0.1588 | | 0.0078 | 18.0 | 450 | 0.0256 | 0.1601 | | 0.0093 | 19.0 | 475 | 0.0235 | 0.1532 | | 0.009 | 20.0 | 500 | 0.0246 | 0.1568 | | 0.0084 | 21.0 | 525 | 0.0238 | 0.1543 | | 0.0083 | 22.0 | 550 | 0.0255 | 0.1598 | | 0.0074 | 23.0 | 575 | 0.0250 | 0.1582 | | 0.0079 | 24.0 | 600 | 0.0248 | 0.1574 | | 0.0077 | 25.0 | 625 | 0.0261 | 0.1616 | | 0.0073 | 26.0 | 650 | 0.0261 | 0.1615 | | 0.0071 | 27.0 | 675 | 0.0247 | 0.1571 | | 0.0068 | 28.0 | 700 | 0.0254 | 0.1593 | | 0.0062 | 29.0 | 725 | 0.0250 | 0.1581 | | 0.006 | 30.0 | 750 | 0.0255 | 0.1597 | | 0.0066 | 31.0 | 775 | 0.0241 | 0.1553 | | 0.0064 | 32.0 | 800 | 0.0242 | 0.1555 | | 0.006 | 33.0 | 825 | 0.0240 | 0.1549 | | 0.0055 | 34.0 | 850 | 0.0244 | 0.1561 | | 0.0055 | 35.0 | 875 | 0.0235 | 0.1533 | | 0.0053 | 36.0 | 900 | 0.0241 | 0.1551 | | 0.0056 | 37.0 | 925 | 0.0238 | 0.1542 | | 0.0052 | 38.0 | 950 | 0.0248 | 0.1576 | | 0.0055 | 39.0 | 975 | 0.0247 | 0.1570 | | 0.0054 | 40.0 | 1000 | 0.0233 | 0.1526 | | 0.0052 | 41.0 | 1025 | 0.0233 | 0.1525 | | 0.0048 | 42.0 | 1050 | 0.0231 | 0.1519 | | 0.0051 | 43.0 | 1075 | 0.0237 | 0.1538 | | 0.0051 | 44.0 | 1100 | 0.0231 | 0.1520 | | 0.0053 | 45.0 | 1125 | 0.0234 | 0.1531 | | 0.0046 | 46.0 | 1150 | 0.0230 | 0.1517 | | 0.0049 | 47.0 | 1175 | 0.0230 | 0.1518 | | 0.005 | 48.0 | 1200 | 0.0230 | 0.1518 | | 0.0047 | 49.0 | 1225 | 0.0237 | 0.1540 | | 0.0047 | 50.0 | 1250 | 0.0230 | 0.1517 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1