Upload 3 files
Browse files- opentaal-annotaties.txt.corrections +0 -0
- opentaal-annotaties.txt.errors +0 -0
- spell.py +75 -0
opentaal-annotaties.txt.corrections
ADDED
The diff for this file is too large to render.
See raw diff
|
|
opentaal-annotaties.txt.errors
ADDED
The diff for this file is too large to render.
See raw diff
|
|
spell.py
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import pipeline, BartForConditionalGeneration, AutoTokenizer
|
2 |
+
from evaluate import load
|
3 |
+
import re
|
4 |
+
|
5 |
+
model = BartForConditionalGeneration.from_pretrained('/home/antalb/software/spelling/bart-base-spelling-nl-9m-3')
|
6 |
+
tokenizer = AutoTokenizer.from_pretrained('/home/antalb/software/spelling/bart-base-spelling-nl-9m-3')
|
7 |
+
|
8 |
+
fix_spelling = pipeline("text2text-generation",model=model,tokenizer=tokenizer)
|
9 |
+
cer = load("cer")
|
10 |
+
wer = load("wer")
|
11 |
+
bleu = load("bleu")
|
12 |
+
meteor = load("meteor")
|
13 |
+
|
14 |
+
file1name = 'opentaal-annotaties.txt.errors'
|
15 |
+
file2name = 'opentaal-annotaties.txt.corrections'
|
16 |
+
|
17 |
+
predictions=[]
|
18 |
+
references=[]
|
19 |
+
|
20 |
+
counter=0;
|
21 |
+
|
22 |
+
#clean_chars = re.compile(r'[^A-Za-zöäüÖÄÜß,.!?’\'$%€0-9\(\)\- ]', re.MULTILINE)
|
23 |
+
clean_chars = re.compile(r'[^A-Za-zëïöäüÖÄÜ,.!?’\'$%€0-9\(\)\- ]', re.MULTILINE)
|
24 |
+
def cleanup(text):
|
25 |
+
text = clean_chars.sub('', text)
|
26 |
+
#print("bug: somehow all numbers are removed - this is might be due to thisregex")
|
27 |
+
#exit()
|
28 |
+
#text = text.replace("\n", "")
|
29 |
+
#text = text.replace('"','\\"')
|
30 |
+
return text
|
31 |
+
|
32 |
+
with open(file1name, "r") as file1, open(file2name, "r") as file2:
|
33 |
+
for line1, line2 in zip(file1, file2):
|
34 |
+
|
35 |
+
line1 = cleanup(line1)
|
36 |
+
|
37 |
+
# for actual spelling correction evaluation:
|
38 |
+
|
39 |
+
intermediate=(fix_spelling(line1,max_length=2048))
|
40 |
+
line=intermediate[0]['generated_text'];
|
41 |
+
|
42 |
+
# for lower-bound testing on the errors:
|
43 |
+
#line = line1
|
44 |
+
|
45 |
+
print(line1)
|
46 |
+
print(line)
|
47 |
+
|
48 |
+
line2 = cleanup(line2)
|
49 |
+
print(line2)
|
50 |
+
|
51 |
+
if len(line)>0 and len(line2)>0:
|
52 |
+
predictions.append(line)
|
53 |
+
references.append(line2)
|
54 |
+
|
55 |
+
if counter%100==0:
|
56 |
+
print(counter)
|
57 |
+
cer_score = cer.compute(predictions=predictions, references=references)
|
58 |
+
print('CER - ' + str(cer_score))
|
59 |
+
wer_score = wer.compute(predictions=predictions, references=references)
|
60 |
+
print('WER - ' + str(wer_score))
|
61 |
+
bleu_score = bleu.compute(predictions=predictions, references=references)
|
62 |
+
print('BLEU - ' + str(bleu_score))
|
63 |
+
meteor_score = meteor.compute(predictions=predictions, references=references)
|
64 |
+
print('METEOR - ' + str(meteor_score))
|
65 |
+
|
66 |
+
counter+=1
|
67 |
+
|
68 |
+
cer_score = cer.compute(predictions=predictions, references=references)
|
69 |
+
print('CER - ' + str(cer_score))
|
70 |
+
wer_score = wer.compute(predictions=predictions, references=references)
|
71 |
+
print('WER - ' + str(wer_score))
|
72 |
+
bleu_score = bleu.compute(predictions=predictions, references=references)
|
73 |
+
print('BLEU - ' + str(bleu_score))
|
74 |
+
meteor_score = meteor.compute(predictions=predictions, references=references)
|
75 |
+
print('METEOR - ' + str(meteor_score))
|