amyeroberts
HF staff
Duplicate from HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit
e9c76ea
verified
# coding=utf-8 | |
# Copyright 2024 Google AI and The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" PyTorch Siglip model.""" | |
import math | |
import warnings | |
from dataclasses import dataclass | |
from typing import Any, Optional, Tuple, Union | |
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
import torch.utils.checkpoint | |
from torch import nn | |
from torch.nn.init import _calculate_fan_in_and_fan_out | |
from transformers.activations import ACT2FN | |
from transformers.modeling_attn_mask_utils import _prepare_4d_attention_mask | |
from transformers.modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling | |
from transformers.modeling_utils import PreTrainedModel | |
from transformers.utils import ( | |
ModelOutput, | |
add_start_docstrings, | |
add_start_docstrings_to_model_forward, | |
is_flash_attn_2_available, | |
logging, | |
replace_return_docstrings, | |
) | |
from .configuration_siglip import SiglipConfig, SiglipTextConfig, SiglipVisionConfig | |
logger = logging.get_logger(__name__) | |
_CHECKPOINT_FOR_DOC = "google/siglip-base-patch16-224" | |
SIGLIP_PRETRAINED_MODEL_ARCHIVE_LIST = [ | |
"google/siglip-base-patch16-224", | |
# See all SigLIP models at https://huggingface.co/models?filter=siglip | |
] | |
if is_flash_attn_2_available(): | |
from flash_attn import flash_attn_func, flash_attn_varlen_func | |
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa | |
# Copied from transformers.models.llama.modeling_llama._get_unpad_data | |
def _get_unpad_data(attention_mask): | |
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32) | |
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten() | |
max_seqlen_in_batch = seqlens_in_batch.max().item() | |
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0)) | |
return ( | |
indices, | |
cu_seqlens, | |
max_seqlen_in_batch, | |
) | |
def _trunc_normal_(tensor, mean, std, a, b): | |
# Cut & paste from PyTorch official master until it's in a few official releases - RW | |
# Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf | |
def norm_cdf(x): | |
# Computes standard normal cumulative distribution function | |
return (1.0 + math.erf(x / math.sqrt(2.0))) / 2.0 | |
if (mean < a - 2 * std) or (mean > b + 2 * std): | |
warnings.warn( | |
"mean is more than 2 std from [a, b] in nn.init.trunc_normal_. " | |
"The distribution of values may be incorrect.", | |
stacklevel=2, | |
) | |
# Values are generated by using a truncated uniform distribution and | |
# then using the inverse CDF for the normal distribution. | |
# Get upper and lower cdf values | |
l = norm_cdf((a - mean) / std) | |
u = norm_cdf((b - mean) / std) | |
# Uniformly fill tensor with values from [l, u], then translate to | |
# [2l-1, 2u-1]. | |
tensor.uniform_(2 * l - 1, 2 * u - 1) | |
# Use inverse cdf transform for normal distribution to get truncated | |
# standard normal | |
if tensor.dtype in [torch.float16, torch.bfloat16]: | |
# The `erfinv_` op is not (yet?) defined in float16+cpu, bfloat16+gpu | |
og_dtype = tensor.dtype | |
tensor = tensor.to(torch.float32) | |
tensor.erfinv_() | |
tensor = tensor.to(og_dtype) | |
else: | |
tensor.erfinv_() | |
# Transform to proper mean, std | |
tensor.mul_(std * math.sqrt(2.0)) | |
tensor.add_(mean) | |
# Clamp to ensure it's in the proper range | |
if tensor.dtype == torch.float16: | |
# The `clamp_` op is not (yet?) defined in float16+cpu | |
tensor = tensor.to(torch.float32) | |
tensor.clamp_(min=a, max=b) | |
tensor = tensor.to(torch.float16) | |
else: | |
tensor.clamp_(min=a, max=b) | |
def trunc_normal_tf_( | |
tensor: torch.Tensor, mean: float = 0.0, std: float = 1.0, a: float = -2.0, b: float = 2.0 | |
) -> torch.Tensor: | |
"""Fills the input Tensor with values drawn from a truncated | |
normal distribution. The values are effectively drawn from the | |
normal distribution :math:`\\mathcal{N}(\text{mean}, \text{std}^2)` | |
with values outside :math:`[a, b]` redrawn until they are within | |
the bounds. The method used for generating the random values works | |
best when :math:`a \\leq \text{mean} \\leq b`. | |
NOTE: this 'tf' variant behaves closer to Tensorflow / JAX impl where the | |
bounds [a, b] are applied when sampling the normal distribution with mean=0, std=1.0 | |
and the result is subsquently scaled and shifted by the mean and std args. | |
Args: | |
tensor: an n-dimensional `torch.Tensor` | |
mean: the mean of the normal distribution | |
std: the standard deviation of the normal distribution | |
a: the minimum cutoff value | |
b: the maximum cutoff value | |
""" | |
with torch.no_grad(): | |
_trunc_normal_(tensor, 0, 1.0, a, b) | |
tensor.mul_(std).add_(mean) | |
def variance_scaling_(tensor, scale=1.0, mode="fan_in", distribution="normal"): | |
fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor) | |
if mode == "fan_in": | |
denom = fan_in | |
elif mode == "fan_out": | |
denom = fan_out | |
elif mode == "fan_avg": | |
denom = (fan_in + fan_out) / 2 | |
variance = scale / denom | |
if distribution == "truncated_normal": | |
# constant is stddev of standard normal truncated to (-2, 2) | |
trunc_normal_tf_(tensor, std=math.sqrt(variance) / 0.87962566103423978) | |
elif distribution == "normal": | |
with torch.no_grad(): | |
tensor.normal_(std=math.sqrt(variance)) | |
elif distribution == "uniform": | |
bound = math.sqrt(3 * variance) | |
with torch.no_grad(): | |
tensor.uniform_(-bound, bound) | |
else: | |
raise ValueError(f"invalid distribution {distribution}") | |
def lecun_normal_(tensor): | |
variance_scaling_(tensor, mode="fan_in", distribution="truncated_normal") | |
def default_flax_embed_init(tensor): | |
variance_scaling_(tensor, mode="fan_in", distribution="normal") | |
# Copied from transformers.models.clip.modeling_clip.CLIPVisionModelOutput with CLIP->Siglip | |
class SiglipVisionModelOutput(ModelOutput): | |
""" | |
Base class for vision model's outputs that also contains image embeddings of the pooling of the last hidden states. | |
Args: | |
image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`): | |
The image embeddings obtained by applying the projection layer to the pooler_output. | |
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): | |
Sequence of hidden-states at the output of the last layer of the model. | |
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): | |
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + | |
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. | |
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. | |
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): | |
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, | |
sequence_length)`. | |
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention | |
heads. | |
""" | |
image_embeds: Optional[torch.FloatTensor] = None | |
last_hidden_state: torch.FloatTensor = None | |
hidden_states: Optional[Tuple[torch.FloatTensor]] = None | |
attentions: Optional[Tuple[torch.FloatTensor]] = None | |
# Copied from transformers.models.clip.modeling_clip.CLIPTextModelOutput with CLIP->Siglip | |
class SiglipTextModelOutput(ModelOutput): | |
""" | |
Base class for text model's outputs that also contains a pooling of the last hidden states. | |
Args: | |
text_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`): | |
The text embeddings obtained by applying the projection layer to the pooler_output. | |
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): | |
Sequence of hidden-states at the output of the last layer of the model. | |
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): | |
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + | |
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. | |
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. | |
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): | |
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, | |
sequence_length)`. | |
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention | |
heads. | |
""" | |
text_embeds: Optional[torch.FloatTensor] = None | |
last_hidden_state: torch.FloatTensor = None | |
hidden_states: Optional[Tuple[torch.FloatTensor]] = None | |
attentions: Optional[Tuple[torch.FloatTensor]] = None | |
# Copied from transformers.models.clip.modeling_clip.CLIPOutput with CLIP->Siglip | |
class SiglipOutput(ModelOutput): | |
""" | |
Args: | |
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`): | |
Contrastive loss for image-text similarity. | |
logits_per_image:(`torch.FloatTensor` of shape `(image_batch_size, text_batch_size)`): | |
The scaled dot product scores between `image_embeds` and `text_embeds`. This represents the image-text | |
similarity scores. | |
logits_per_text:(`torch.FloatTensor` of shape `(text_batch_size, image_batch_size)`): | |
The scaled dot product scores between `text_embeds` and `image_embeds`. This represents the text-image | |
similarity scores. | |
text_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`): | |
The text embeddings obtained by applying the projection layer to the pooled output of [`SiglipTextModel`]. | |
image_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`): | |
The image embeddings obtained by applying the projection layer to the pooled output of [`SiglipVisionModel`]. | |
text_model_output(`BaseModelOutputWithPooling`): | |
The output of the [`SiglipTextModel`]. | |
vision_model_output(`BaseModelOutputWithPooling`): | |
The output of the [`SiglipVisionModel`]. | |
""" | |
loss: Optional[torch.FloatTensor] = None | |
logits_per_image: torch.FloatTensor = None | |
logits_per_text: torch.FloatTensor = None | |
text_embeds: torch.FloatTensor = None | |
image_embeds: torch.FloatTensor = None | |
text_model_output: BaseModelOutputWithPooling = None | |
vision_model_output: BaseModelOutputWithPooling = None | |
def to_tuple(self) -> Tuple[Any]: | |
return tuple( | |
self[k] if k not in ["text_model_output", "vision_model_output"] else getattr(self, k).to_tuple() | |
for k in self.keys() | |
) | |
class SiglipVisionEmbeddings(nn.Module): | |
def __init__(self, config: SiglipVisionConfig): | |
super().__init__() | |
self.config = config | |
self.embed_dim = config.hidden_size | |
self.image_size = config.image_size | |
self.patch_size = config.patch_size | |
self.patch_embedding = nn.Conv2d( | |
in_channels=config.num_channels, | |
out_channels=self.embed_dim, | |
kernel_size=self.patch_size, | |
stride=self.patch_size, | |
padding="valid", | |
) | |
self.num_patches_per_side = self.image_size // self.patch_size | |
self.num_patches = self.num_patches_per_side**2 | |
self.num_positions = self.num_patches | |
self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim) | |
def forward(self, pixel_values: torch.FloatTensor, patch_attention_mask: torch.BoolTensor) -> torch.Tensor: | |
batch_size = pixel_values.size(0) | |
patch_embeds = self.patch_embedding(pixel_values) | |
embeddings = patch_embeds.flatten(2).transpose(1, 2) | |
max_im_h, max_im_w = pixel_values.size(2), pixel_values.size(3) | |
max_nb_patches_h, max_nb_patches_w = max_im_h // self.patch_size, max_im_w // self.patch_size | |
boundaries = torch.arange(1 / self.num_patches_per_side, 1.0, 1 / self.num_patches_per_side) | |
position_ids = torch.full( | |
size=( | |
batch_size, | |
max_nb_patches_h * max_nb_patches_w, | |
), | |
fill_value=0, | |
) | |
for batch_idx, p_attn_mask in enumerate(patch_attention_mask): | |
nb_patches_h = p_attn_mask[:, 0].sum() | |
nb_patches_w = p_attn_mask[0].sum() | |
fractional_coords_h = torch.arange(0, 1 - 1e-6, 1 / nb_patches_h) | |
fractional_coords_w = torch.arange(0, 1 - 1e-6, 1 / nb_patches_w) | |
bucket_coords_h = torch.bucketize(fractional_coords_h, boundaries, right=True) | |
bucket_coords_w = torch.bucketize(fractional_coords_w, boundaries, right=True) | |
pos_ids = (bucket_coords_h[:, None] * self.num_patches_per_side + bucket_coords_w).flatten() | |
position_ids[batch_idx][p_attn_mask.view(-1).cpu()] = pos_ids | |
position_ids = position_ids.to(self.position_embedding.weight.device) | |
embeddings = embeddings + self.position_embedding(position_ids) | |
return embeddings | |
# Copied from transformers.models.clip.modeling_clip.CLIPTextEmbeddings with CLIP->Siglip | |
class SiglipTextEmbeddings(nn.Module): | |
def __init__(self, config: SiglipTextConfig): | |
super().__init__() | |
embed_dim = config.hidden_size | |
self.token_embedding = nn.Embedding(config.vocab_size, embed_dim) | |
self.position_embedding = nn.Embedding(config.max_position_embeddings, embed_dim) | |
# position_ids (1, len position emb) is contiguous in memory and exported when serialized | |
self.register_buffer( | |
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False | |
) | |
def forward( | |
self, | |
input_ids: Optional[torch.LongTensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
) -> torch.Tensor: | |
seq_length = input_ids.shape[-1] if input_ids is not None else inputs_embeds.shape[-2] | |
if position_ids is None: | |
position_ids = self.position_ids[:, :seq_length] | |
if inputs_embeds is None: | |
inputs_embeds = self.token_embedding(input_ids) | |
position_embeddings = self.position_embedding(position_ids) | |
embeddings = inputs_embeds + position_embeddings | |
return embeddings | |
class SiglipAttention(nn.Module): | |
"""Multi-headed attention from 'Attention Is All You Need' paper""" | |
# Copied from transformers.models.clip.modeling_clip.CLIPAttention.__init__ | |
def __init__(self, config): | |
super().__init__() | |
self.config = config | |
self.embed_dim = config.hidden_size | |
self.num_heads = config.num_attention_heads | |
self.head_dim = self.embed_dim // self.num_heads | |
if self.head_dim * self.num_heads != self.embed_dim: | |
raise ValueError( | |
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:" | |
f" {self.num_heads})." | |
) | |
self.scale = self.head_dim**-0.5 | |
self.dropout = config.attention_dropout | |
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim) | |
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim) | |
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim) | |
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: Optional[torch.Tensor] = None, | |
output_attentions: Optional[bool] = False, | |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | |
"""Input shape: Batch x Time x Channel""" | |
batch_size, q_len, _ = hidden_states.size() | |
query_states = self.q_proj(hidden_states) | |
key_states = self.k_proj(hidden_states) | |
value_states = self.v_proj(hidden_states) | |
query_states = query_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2) | |
key_states = key_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2) | |
value_states = value_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2) | |
k_v_seq_len = key_states.shape[-2] | |
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) * self.scale | |
if attn_weights.size() != (batch_size, self.num_heads, q_len, k_v_seq_len): | |
raise ValueError( | |
f"Attention weights should be of size {(batch_size, self.num_heads, q_len, k_v_seq_len)}, but is" | |
f" {attn_weights.size()}" | |
) | |
if attention_mask is not None: | |
if attention_mask.size() != (batch_size, 1, q_len, k_v_seq_len): | |
raise ValueError( | |
f"Attention mask should be of size {(batch_size, 1, q_len, k_v_seq_len)}, but is {attention_mask.size()}" | |
) | |
attn_weights = attn_weights + attention_mask | |
# upcast attention to fp32 | |
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) | |
attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) | |
attn_output = torch.matmul(attn_weights, value_states) | |
if attn_output.size() != (batch_size, self.num_heads, q_len, self.head_dim): | |
raise ValueError( | |
f"`attn_output` should be of size {(batch_size, self.num_heads, q_len, self.head_dim)}, but is" | |
f" {attn_output.size()}" | |
) | |
attn_output = attn_output.transpose(1, 2).contiguous() | |
attn_output = attn_output.reshape(batch_size, q_len, self.embed_dim) | |
attn_output = self.out_proj(attn_output) | |
return attn_output, attn_weights | |
class SiglipFlashAttention2(SiglipAttention): | |
""" | |
Llama flash attention module. This module inherits from `LlamaAttention` as the weights of the module stays | |
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of | |
flash attention and deal with padding tokens in case the input contains any of them. | |
""" | |
def __init__(self, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
self.is_causal = False # Hack to make sure we don't use a causal mask | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: Optional[torch.LongTensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_value: Optional[Tuple[torch.Tensor]] = None, | |
output_attentions: bool = False, | |
use_cache: bool = False, | |
**kwargs, | |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | |
output_attentions = False | |
bsz, q_len, _ = hidden_states.size() | |
query_states = self.q_proj(hidden_states) | |
key_states = self.k_proj(hidden_states) | |
value_states = self.v_proj(hidden_states) | |
# Flash attention requires the input to have the shape | |
# batch_size x seq_length x head_dim x hidden_dim | |
# therefore we just need to keep the original shape | |
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) | |
key_states = key_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) | |
value_states = value_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) | |
kv_seq_len = key_states.shape[-2] | |
if past_key_value is not None: | |
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) | |
# cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) | |
# query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) | |
# if past_key_value is not None: | |
# cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models | |
# key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) | |
# TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache | |
# to be able to avoid many of these transpose/reshape/view. | |
query_states = query_states.transpose(1, 2) | |
key_states = key_states.transpose(1, 2) | |
value_states = value_states.transpose(1, 2) | |
dropout_rate = self.dropout if self.training else 0.0 | |
# In PEFT, usually we cast the layer norms in float32 for training stability reasons | |
# therefore the input hidden states gets silently casted in float32. Hence, we need | |
# cast them back in the correct dtype just to be sure everything works as expected. | |
# This might slowdown training & inference so it is recommended to not cast the LayerNorms | |
# in fp32. (LlamaRMSNorm handles it correctly) | |
input_dtype = query_states.dtype | |
if input_dtype == torch.float32: | |
if torch.is_autocast_enabled(): | |
target_dtype = torch.get_autocast_gpu_dtype() | |
# Handle the case where the model is quantized | |
elif hasattr(self.config, "_pre_quantization_dtype"): | |
target_dtype = self.config._pre_quantization_dtype | |
else: | |
target_dtype = self.q_proj.weight.dtype | |
logger.warning_once( | |
"The input hidden states seems to be silently casted in float32, this might be related to the fact" | |
" you have upcasted embedding or layer norm layers in float32. We will cast back the input in" | |
f" {target_dtype}." | |
) | |
query_states = query_states.to(target_dtype) | |
key_states = key_states.to(target_dtype) | |
value_states = value_states.to(target_dtype) | |
attn_output = self._flash_attention_forward( | |
query_states, key_states, value_states, attention_mask, q_len, dropout=dropout_rate | |
) | |
attn_output = attn_output.reshape(bsz, q_len, self.embed_dim).contiguous() | |
attn_output = self.out_proj(attn_output) | |
if not output_attentions: | |
attn_weights = None | |
return attn_output, attn_weights | |
def _flash_attention_forward( | |
self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None | |
): | |
""" | |
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token | |
first unpad the input, then computes the attention scores and pad the final attention scores. | |
Args: | |
query_states (`torch.Tensor`): | |
Input query states to be passed to Flash Attention API | |
key_states (`torch.Tensor`): | |
Input key states to be passed to Flash Attention API | |
value_states (`torch.Tensor`): | |
Input value states to be passed to Flash Attention API | |
attention_mask (`torch.Tensor`): | |
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the | |
position of padding tokens and 1 for the position of non-padding tokens. | |
dropout (`int`, *optional*): | |
Attention dropout | |
softmax_scale (`float`, *optional*): | |
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim) | |
""" | |
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__. | |
causal = self.is_causal and query_length != 1 | |
# Contains at least one padding token in the sequence | |
if attention_mask is not None: | |
batch_size = query_states.shape[0] | |
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input( | |
query_states, key_states, value_states, attention_mask, query_length | |
) | |
cu_seqlens_q, cu_seqlens_k = cu_seq_lens | |
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens | |
attn_output_unpad = flash_attn_varlen_func( | |
query_states, | |
key_states, | |
value_states, | |
cu_seqlens_q=cu_seqlens_q, | |
cu_seqlens_k=cu_seqlens_k, | |
max_seqlen_q=max_seqlen_in_batch_q, | |
max_seqlen_k=max_seqlen_in_batch_k, | |
dropout_p=dropout, | |
softmax_scale=softmax_scale, | |
causal=causal, | |
) | |
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length) | |
else: | |
attn_output = flash_attn_func( | |
query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal | |
) | |
return attn_output | |
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length): | |
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask) | |
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape | |
key_layer = index_first_axis( | |
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k | |
) | |
value_layer = index_first_axis( | |
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k | |
) | |
if query_length == kv_seq_len: | |
query_layer = index_first_axis( | |
query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k | |
) | |
cu_seqlens_q = cu_seqlens_k | |
max_seqlen_in_batch_q = max_seqlen_in_batch_k | |
indices_q = indices_k | |
elif query_length == 1: | |
max_seqlen_in_batch_q = 1 | |
cu_seqlens_q = torch.arange( | |
batch_size + 1, dtype=torch.int32, device=query_layer.device | |
) # There is a memcpy here, that is very bad. | |
indices_q = cu_seqlens_q[:-1] | |
query_layer = query_layer.squeeze(1) | |
else: | |
# The -q_len: slice assumes left padding. | |
attention_mask = attention_mask[:, -query_length:] | |
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask) | |
return ( | |
query_layer, | |
key_layer, | |
value_layer, | |
indices_q, | |
(cu_seqlens_q, cu_seqlens_k), | |
(max_seqlen_in_batch_q, max_seqlen_in_batch_k), | |
) | |
# Copied from transformers.models.clip.modeling_clip.CLIPMLP with CLIP->Siglip | |
class SiglipMLP(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.config = config | |
self.activation_fn = ACT2FN[config.hidden_act] | |
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size) | |
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size) | |
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
hidden_states = self.fc1(hidden_states) | |
hidden_states = self.activation_fn(hidden_states) | |
hidden_states = self.fc2(hidden_states) | |
return hidden_states | |
# Copied from transformers.models.clip.modeling_clip.CLIPEncoderLayer with CLIP->Siglip | |
class SiglipEncoderLayer(nn.Module): | |
def __init__(self, config: SiglipConfig): | |
super().__init__() | |
self.embed_dim = config.hidden_size | |
self.self_attn = ( | |
SiglipAttention(config) | |
if not getattr(config, "_flash_attn_2_enabled", False) | |
else SiglipFlashAttention2(config) | |
) | |
self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) | |
self.mlp = SiglipMLP(config) | |
self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: torch.Tensor, | |
output_attentions: Optional[bool] = False, | |
) -> Tuple[torch.FloatTensor]: | |
""" | |
Args: | |
hidden_states (`torch.FloatTensor`): | |
Input to the layer of shape `(batch, seq_len, embed_dim)`. | |
attention_mask (`torch.FloatTensor`): | |
Attention mask of shape `(batch, 1, q_len, k_v_seq_len)` where padding elements are indicated by very large negative values. | |
output_attentions (`bool`, *optional*, defaults to `False`): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under | |
returned tensors for more detail. | |
""" | |
residual = hidden_states | |
hidden_states = self.layer_norm1(hidden_states) | |
hidden_states, attn_weights = self.self_attn( | |
hidden_states=hidden_states, | |
attention_mask=attention_mask, | |
output_attentions=output_attentions, | |
) | |
hidden_states = residual + hidden_states | |
residual = hidden_states | |
hidden_states = self.layer_norm2(hidden_states) | |
hidden_states = self.mlp(hidden_states) | |
hidden_states = residual + hidden_states | |
outputs = (hidden_states,) | |
if output_attentions: | |
outputs += (attn_weights,) | |
return outputs | |
class SiglipPreTrainedModel(PreTrainedModel): | |
""" | |
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained | |
models. | |
""" | |
config_class = SiglipConfig | |
base_model_prefix = "siglip" | |
supports_gradient_checkpointing = True | |
def _init_weights(self, module): | |
"""Initialize the weights""" | |
if isinstance(module, SiglipVisionEmbeddings): | |
width = ( | |
self.config.vision_config.hidden_size | |
if isinstance(self.config, SiglipConfig) | |
else self.config.hidden_size | |
) | |
nn.init.normal_(module.position_embedding.weight, std=1 / np.sqrt(width)) | |
elif isinstance(module, nn.Embedding): | |
default_flax_embed_init(module.weight) | |
elif isinstance(module, SiglipAttention): | |
nn.init.normal_(module.q_proj.weight) | |
nn.init.normal_(module.k_proj.weight) | |
nn.init.normal_(module.v_proj.weight) | |
nn.init.normal_(module.out_proj.weight) | |
nn.init.zeros_(module.q_proj.bias) | |
nn.init.zeros_(module.k_proj.bias) | |
nn.init.zeros_(module.v_proj.bias) | |
nn.init.zeros_(module.out_proj.bias) | |
elif isinstance(module, SiglipMLP): | |
nn.init.normal_(module.fc1.weight) | |
nn.init.normal_(module.fc2.weight) | |
nn.init.normal_(module.fc1.bias, std=1e-6) | |
nn.init.normal_(module.fc2.bias, std=1e-6) | |
elif isinstance(module, SiglipMultiheadAttentionPoolingHead): | |
nn.init.normal_(module.probe.data) | |
nn.init.normal_(module.attention.in_proj_weight.data) | |
nn.init.zeros_(module.attention.in_proj_bias.data) | |
elif isinstance(module, SiglipModel): | |
logit_scale_init = torch.tensor(0.0) | |
module.logit_scale.data.fill_(logit_scale_init) | |
module.logit_bias.data.zero_() | |
elif isinstance(module, (nn.Linear, nn.Conv2d)): | |
lecun_normal_(module.weight) | |
if module.bias is not None: | |
nn.init.zeros_(module.bias) | |
elif isinstance(module, nn.LayerNorm): | |
module.bias.data.zero_() | |
module.weight.data.fill_(1.0) | |
SIGLIP_START_DOCSTRING = r""" | |
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the | |
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads | |
etc.) | |
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. | |
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage | |
and behavior. | |
Parameters: | |
config ([`SiglipConfig`]): Model configuration class with all the parameters of the model. | |
Initializing with a config file does not load the weights associated with the model, only the | |
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. | |
""" | |
SIGLIP_TEXT_INPUTS_DOCSTRING = r""" | |
Args: | |
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): | |
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide | |
it. | |
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
[`PreTrainedTokenizer.__call__`] for details. | |
[What are input IDs?](../glossary#input-ids) | |
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
[What are attention masks?](../glossary#attention-mask) | |
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, | |
config.max_position_embeddings - 1]`. | |
[What are position IDs?](../glossary#position-ids) | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
tensors for more detail. | |
output_hidden_states (`bool`, *optional*): | |
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
more detail. | |
return_dict (`bool`, *optional*): | |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
""" | |
SIGLIP_VISION_INPUTS_DOCSTRING = r""" | |
Args: | |
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): | |
Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using | |
[`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details. | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
tensors for more detail. | |
output_hidden_states (`bool`, *optional*): | |
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
more detail. | |
return_dict (`bool`, *optional*): | |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
""" | |
SIGLIP_INPUTS_DOCSTRING = r""" | |
Args: | |
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): | |
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide | |
it. | |
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
[`PreTrainedTokenizer.__call__`] for details. | |
[What are input IDs?](../glossary#input-ids) | |
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
[What are attention masks?](../glossary#attention-mask) | |
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, | |
config.max_position_embeddings - 1]`. | |
[What are position IDs?](../glossary#position-ids) | |
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): | |
Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using | |
[`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details. | |
return_loss (`bool`, *optional*): | |
Whether or not to return the contrastive loss. | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
tensors for more detail. | |
output_hidden_states (`bool`, *optional*): | |
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
more detail. | |
return_dict (`bool`, *optional*): | |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
""" | |
# Copied from transformers.models.clip.modeling_clip.CLIPEncoder with CLIP->Siglip | |
class SiglipEncoder(nn.Module): | |
""" | |
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a | |
[`SiglipEncoderLayer`]. | |
Args: | |
config: SiglipConfig | |
""" | |
def __init__(self, config: SiglipConfig): | |
super().__init__() | |
self.config = config | |
self.layers = nn.ModuleList([SiglipEncoderLayer(config) for _ in range(config.num_hidden_layers)]) | |
self.gradient_checkpointing = False | |
# Ignore copy | |
def forward( | |
self, | |
inputs_embeds, | |
attention_mask: Optional[torch.Tensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, BaseModelOutput]: | |
r""" | |
Args: | |
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): | |
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. | |
This is useful if you want more control over how to convert `input_ids` indices into associated vectors | |
than the model's internal embedding lookup matrix. | |
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
[What are attention masks?](../glossary#attention-mask) | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under | |
returned tensors for more detail. | |
output_hidden_states (`bool`, *optional*): | |
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors | |
for more detail. | |
return_dict (`bool`, *optional*): | |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
""" | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
encoder_states = () if output_hidden_states else None | |
all_attentions = () if output_attentions else None | |
hidden_states = inputs_embeds | |
for encoder_layer in self.layers: | |
if output_hidden_states: | |
encoder_states = encoder_states + (hidden_states,) | |
if self.gradient_checkpointing and self.training: | |
layer_outputs = self._gradient_checkpointing_func( | |
encoder_layer.__call__, | |
hidden_states, | |
attention_mask, | |
output_attentions, | |
) | |
else: | |
layer_outputs = encoder_layer( | |
hidden_states, | |
attention_mask, | |
output_attentions=output_attentions, | |
) | |
hidden_states = layer_outputs[0] | |
if output_attentions: | |
all_attentions = all_attentions + (layer_outputs[1],) | |
if output_hidden_states: | |
encoder_states = encoder_states + (hidden_states,) | |
if not return_dict: | |
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) | |
return BaseModelOutput( | |
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions | |
) | |
class SiglipTextTransformer(nn.Module): | |
def __init__(self, config: SiglipTextConfig): | |
super().__init__() | |
self.config = config | |
embed_dim = config.hidden_size | |
self.embeddings = SiglipTextEmbeddings(config) | |
self.encoder = SiglipEncoder(config) | |
self.final_layer_norm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) | |
self.head = nn.Linear(embed_dim, embed_dim) | |
def forward( | |
self, | |
input_ids: Optional[torch.Tensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.Tensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, BaseModelOutputWithPooling]: | |
r""" | |
Returns: | |
""" | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
if input_ids is None: | |
raise ValueError("You have to specify input_ids") | |
input_shape = input_ids.size() | |
input_ids = input_ids.view(-1, input_shape[-1]) | |
hidden_states = self.embeddings(input_ids=input_ids, position_ids=position_ids) | |
# note: SigLIP's text model does not use a causal mask, unlike the original CLIP model. | |
# expand attention_mask | |
if attention_mask is not None: | |
# [batch_size, seq_len] -> [batch_size, 1, tgt_seq_len, src_seq_len] | |
attention_mask = _prepare_4d_attention_mask(attention_mask, hidden_states.dtype) | |
encoder_outputs = self.encoder( | |
inputs_embeds=hidden_states, | |
attention_mask=attention_mask, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
last_hidden_state = encoder_outputs[0] | |
last_hidden_state = self.final_layer_norm(last_hidden_state) | |
# Assuming "sticky" EOS tokenization, last token is always EOS. | |
pooled_output = last_hidden_state[:, -1, :] | |
pooled_output = self.head(pooled_output) | |
if not return_dict: | |
return (last_hidden_state, pooled_output) + encoder_outputs[1:] | |
return BaseModelOutputWithPooling( | |
last_hidden_state=last_hidden_state, | |
pooler_output=pooled_output, | |
hidden_states=encoder_outputs.hidden_states, | |
attentions=encoder_outputs.attentions, | |
) | |
class SiglipTextModel(SiglipPreTrainedModel): | |
config_class = SiglipTextConfig | |
_no_split_modules = ["SiglipTextEmbeddings", "SiglipEncoderLayer"] | |
def __init__(self, config: SiglipTextConfig): | |
super().__init__(config) | |
self.text_model = SiglipTextTransformer(config) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_input_embeddings(self) -> nn.Module: | |
return self.text_model.embeddings.token_embedding | |
def set_input_embeddings(self, value): | |
self.text_model.embeddings.token_embedding = value | |
def forward( | |
self, | |
input_ids: Optional[torch.Tensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.Tensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, BaseModelOutputWithPooling]: | |
r""" | |
Returns: | |
Examples: | |
```python | |
>>> from transformers import AutoTokenizer, SiglipTextModel | |
>>> model = SiglipTextModel.from_pretrained("google/siglip-base-patch16-224") | |
>>> tokenizer = AutoTokenizer.from_pretrained("google/siglip-base-patch16-224") | |
>>> # important: make sure to set padding="max_length" as that's how the model was trained | |
>>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding="max_length", return_tensors="pt") | |
>>> outputs = model(**inputs) | |
>>> last_hidden_state = outputs.last_hidden_state | |
>>> pooled_output = outputs.pooler_output # pooled (EOS token) states | |
```""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
return self.text_model( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
class SiglipVisionTransformer(nn.Module): | |
def __init__(self, config: SiglipVisionConfig): | |
super().__init__() | |
self.config = config | |
embed_dim = config.hidden_size | |
self.embeddings = SiglipVisionEmbeddings(config) | |
self.encoder = SiglipEncoder(config) | |
self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) | |
self.head = SiglipMultiheadAttentionPoolingHead(config) | |
def forward( | |
self, | |
pixel_values, | |
patch_attention_mask: Optional[torch.BoolTensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, BaseModelOutputWithPooling]: | |
r""" | |
Returns: | |
""" | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
batch_size = pixel_values.size(0) | |
if patch_attention_mask is None: | |
patch_attention_mask = torch.ones( | |
size=( | |
batch_size, | |
pixel_values.size(2) // self.config.patch_size, | |
pixel_values.size(3) // self.config.patch_size, | |
), | |
dtype=torch.bool, | |
device=pixel_values.device, | |
) | |
hidden_states = self.embeddings(pixel_values=pixel_values, patch_attention_mask=patch_attention_mask) | |
patch_attention_mask = patch_attention_mask.view(batch_size, -1) | |
# The call to `_upad_input` in `_flash_attention_forward` is expensive | |
# So when the `patch_attention_mask` is full of 1s (i.e. attending to the whole sequence), | |
# avoiding passing the attention_mask, which is equivalent to attending to the full sequence | |
if not torch.any(~patch_attention_mask): | |
attention_mask=None | |
else: | |
attention_mask = ( | |
_prepare_4d_attention_mask(patch_attention_mask, hidden_states.dtype) | |
if not self.config._flash_attn_2_enabled | |
else patch_attention_mask | |
) | |
encoder_outputs = self.encoder( | |
inputs_embeds=hidden_states, | |
attention_mask=attention_mask, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
last_hidden_state = encoder_outputs[0] | |
last_hidden_state = self.post_layernorm(last_hidden_state) | |
pooled_output = self.head( | |
hidden_state=last_hidden_state, | |
attention_mask=patch_attention_mask, | |
) | |
if not return_dict: | |
return (last_hidden_state, pooled_output) + encoder_outputs[1:] | |
return BaseModelOutputWithPooling( | |
last_hidden_state=last_hidden_state, | |
pooler_output=pooled_output, | |
hidden_states=encoder_outputs.hidden_states, | |
attentions=encoder_outputs.attentions, | |
) | |
class SiglipMultiheadAttentionPoolingHead(nn.Module): | |
"""Multihead Attention Pooling.""" | |
def __init__(self, config: SiglipVisionConfig): | |
super().__init__() | |
self.probe = nn.Parameter(torch.randn(1, 1, config.hidden_size)) | |
self.attention = torch.nn.MultiheadAttention(config.hidden_size, config.num_attention_heads, batch_first=True) | |
self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
self.mlp = SiglipMLP(config) | |
def forward(self, hidden_state, attention_mask): | |
batch_size = hidden_state.shape[0] | |
probe = self.probe.repeat(batch_size, 1, 1) | |
hidden_state = self.attention( | |
query=probe, key=hidden_state, value=hidden_state, key_padding_mask=~attention_mask | |
)[0] | |
residual = hidden_state | |
hidden_state = self.layernorm(hidden_state) | |
hidden_state = residual + self.mlp(hidden_state) | |
return hidden_state[:, 0] | |
class SiglipVisionModel(SiglipPreTrainedModel): | |
config_class = SiglipVisionConfig | |
main_input_name = "pixel_values" | |
def __init__(self, config: SiglipVisionConfig): | |
super().__init__(config) | |
self.vision_model = SiglipVisionTransformer(config) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_input_embeddings(self) -> nn.Module: | |
return self.vision_model.embeddings.patch_embedding | |
def forward( | |
self, | |
pixel_values, | |
patch_attention_mask: Optional[torch.BoolTensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, BaseModelOutputWithPooling]: | |
r""" | |
Returns: | |
Examples: | |
```python | |
>>> from PIL import Image | |
>>> import requests | |
>>> from transformers import AutoProcessor, SiglipVisionModel | |
>>> model = SiglipVisionModel.from_pretrained("google/siglip-base-patch16-224") | |
>>> processor = AutoProcessor.from_pretrained("google/siglip-base-patch16-224") | |
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" | |
>>> image = Image.open(requests.get(url, stream=True).raw) | |
>>> inputs = processor(images=image, return_tensors="pt") | |
>>> outputs = model(**inputs) | |
>>> last_hidden_state = outputs.last_hidden_state | |
>>> pooled_output = outputs.pooler_output # pooled features | |
```""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
return self.vision_model( | |
pixel_values=pixel_values, | |
patch_attention_mask=patch_attention_mask, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
class SiglipModel(SiglipPreTrainedModel): | |
config_class = SiglipConfig | |
def __init__(self, config: SiglipConfig): | |
super().__init__(config) | |
if not isinstance(config.text_config, SiglipTextConfig): | |
raise ValueError( | |
"config.text_config is expected to be of type SiglipTextConfig but is of type" | |
f" {type(config.text_config)}." | |
) | |
if not isinstance(config.vision_config, SiglipVisionConfig): | |
raise ValueError( | |
"config.vision_config is expected to be of type SiglipVisionConfig but is of type" | |
f" {type(config.vision_config)}." | |
) | |
text_config = config.text_config | |
vision_config = config.vision_config | |
self.text_model = SiglipTextTransformer(text_config) | |
self.vision_model = SiglipVisionTransformer(vision_config) | |
self.logit_scale = nn.Parameter(torch.randn(1)) | |
self.logit_bias = nn.Parameter(torch.randn(1)) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_text_features( | |
self, | |
input_ids: Optional[torch.Tensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.Tensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> torch.FloatTensor: | |
r""" | |
Returns: | |
text_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by | |
applying the projection layer to the pooled output of [`SiglipTextModel`]. | |
Examples: | |
```python | |
>>> from transformers import AutoTokenizer, AutoModel | |
>>> import torch | |
>>> model = AutoModel.from_pretrained("google/siglip-base-patch16-224") | |
>>> tokenizer = AutoTokenizer.from_pretrained("google/siglip-base-patch16-224") | |
>>> # important: make sure to set padding="max_length" as that's how the model was trained | |
>>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding="max_length", return_tensors="pt") | |
>>> with torch.no_grad(): | |
... text_features = model.get_text_features(**inputs) | |
```""" | |
# Use SigLIP model's config for some fields (if specified) instead of those of vision & text components. | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
text_outputs = self.text_model( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
pooled_output = text_outputs[1] | |
return pooled_output | |
def get_image_features( | |
self, | |
pixel_values: Optional[torch.FloatTensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> torch.FloatTensor: | |
r""" | |
Returns: | |
image_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The image embeddings obtained by | |
applying the projection layer to the pooled output of [`SiglipVisionModel`]. | |
Examples: | |
```python | |
>>> from PIL import Image | |
>>> import requests | |
>>> from transformers import AutoProcessor, AutoModel | |
>>> import torch | |
>>> model = AutoModel.from_pretrained("google/siglip-base-patch16-224") | |
>>> processor = AutoProcessor.from_pretrained("google/siglip-base-patch16-224") | |
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" | |
>>> image = Image.open(requests.get(url, stream=True).raw) | |
>>> inputs = processor(images=image, return_tensors="pt") | |
>>> with torch.no_grad(): | |
... image_features = model.get_image_features(**inputs) | |
```""" | |
# Use SiglipModel's config for some fields (if specified) instead of those of vision & text components. | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
vision_outputs = self.vision_model( | |
pixel_values=pixel_values, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
pooled_output = vision_outputs[1] | |
return pooled_output | |
def forward( | |
self, | |
input_ids: Optional[torch.LongTensor] = None, | |
pixel_values: Optional[torch.FloatTensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
return_loss: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, SiglipOutput]: | |
r""" | |
Returns: | |
Examples: | |
```python | |
>>> from PIL import Image | |
>>> import requests | |
>>> from transformers import AutoProcessor, AutoModel | |
>>> import torch | |
>>> model = AutoModel.from_pretrained("google/siglip-base-patch16-224") | |
>>> processor = AutoProcessor.from_pretrained("google/siglip-base-patch16-224") | |
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" | |
>>> image = Image.open(requests.get(url, stream=True).raw) | |
>>> texts = ["a photo of 2 cats", "a photo of 2 dogs"] | |
>>> # important: we pass `padding=max_length` since the model was trained with this | |
>>> inputs = processor(text=texts, images=image, padding="max_length", return_tensors="pt") | |
>>> with torch.no_grad(): | |
... outputs = model(**inputs) | |
>>> logits_per_image = outputs.logits_per_image | |
>>> probs = torch.sigmoid(logits_per_image) # these are the probabilities | |
>>> print(f"{probs[0][0]:.1%} that image 0 is '{texts[0]}'") | |
31.9% that image 0 is 'a photo of 2 cats' | |
```""" | |
# Use SigLIP model's config for some fields (if specified) instead of those of vision & text components. | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
vision_outputs = self.vision_model( | |
pixel_values=pixel_values, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
text_outputs = self.text_model( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
image_embeds = vision_outputs[1] | |
text_embeds = text_outputs[1] | |
# normalized features | |
image_embeds = image_embeds / image_embeds.norm(p=2, dim=-1, keepdim=True) | |
text_embeds = text_embeds / text_embeds.norm(p=2, dim=-1, keepdim=True) | |
# cosine similarity as logits | |
logits_per_text = torch.matmul(text_embeds, image_embeds.t()) * self.logit_scale.exp() + self.logit_bias | |
logits_per_image = logits_per_text.t() | |
loss = None | |
if return_loss: | |
raise NotImplementedError("SigLIP loss to be implemented") | |
if not return_dict: | |
output = (logits_per_image, logits_per_text, text_embeds, image_embeds, text_outputs, vision_outputs) | |
return ((loss,) + output) if loss is not None else output | |
return SiglipOutput( | |
loss=loss, | |
logits_per_image=logits_per_image, | |
logits_per_text=logits_per_text, | |
text_embeds=text_embeds, | |
image_embeds=image_embeds, | |
text_model_output=text_outputs, | |
vision_model_output=vision_outputs, | |
) | |