--- license: apache-2.0 base_model: distilbert-base-uncased-finetuned-sst-2-english tags: - generated_from_keras_callback model-index: - name: distilbert-base-uncased-finetuned-intel-llm-yn-dataset results: [] --- # distilbert-base-uncased-finetuned-intel-llm-yn-dataset This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.3401 - Train Accuracy: 0.8595 - Validation Loss: 0.4899 - Validation Accuracy: 0.7858 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 1e-05, 'decay_steps': 2946, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch | |:----------:|:--------------:|:---------------:|:-------------------:|:-----:| | 0.6333 | 0.6752 | 0.5191 | 0.7486 | 0 | | 0.4562 | 0.7870 | 0.4849 | 0.7898 | 1 | | 0.3401 | 0.8595 | 0.4899 | 0.7858 | 2 | ### Framework versions - Transformers 4.34.0 - TensorFlow 2.12.0 - Datasets 2.14.5 - Tokenizers 0.14.0