End of training
Browse files- README.md +77 -0
- pytorch_model.bin +1 -1
README.md
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
base_model: pdelobelle/robbert-v2-dutch-base
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- recall
|
8 |
+
- accuracy
|
9 |
+
model-index:
|
10 |
+
- name: robbert_testrun
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# robbert_testrun
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [pdelobelle/robbert-v2-dutch-base](https://huggingface.co/pdelobelle/robbert-v2-dutch-base) on an unknown dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 0.5609
|
22 |
+
- Precisions: 0.8558
|
23 |
+
- Recall: 0.8234
|
24 |
+
- F-measure: 0.8375
|
25 |
+
- Accuracy: 0.9294
|
26 |
+
|
27 |
+
## Model description
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Intended uses & limitations
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training and evaluation data
|
36 |
+
|
37 |
+
More information needed
|
38 |
+
|
39 |
+
## Training procedure
|
40 |
+
|
41 |
+
### Training hyperparameters
|
42 |
+
|
43 |
+
The following hyperparameters were used during training:
|
44 |
+
- learning_rate: 7.5e-05
|
45 |
+
- train_batch_size: 16
|
46 |
+
- eval_batch_size: 16
|
47 |
+
- seed: 42
|
48 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
49 |
+
- lr_scheduler_type: linear
|
50 |
+
- num_epochs: 14
|
51 |
+
|
52 |
+
### Training results
|
53 |
+
|
54 |
+
| Training Loss | Epoch | Step | Validation Loss | Precisions | Recall | F-measure | Accuracy |
|
55 |
+
|:-------------:|:-----:|:----:|:---------------:|:----------:|:------:|:---------:|:--------:|
|
56 |
+
| 0.4449 | 1.0 | 285 | 0.3985 | 0.8120 | 0.6963 | 0.7240 | 0.8907 |
|
57 |
+
| 0.19 | 2.0 | 570 | 0.3572 | 0.8522 | 0.7715 | 0.8031 | 0.9118 |
|
58 |
+
| 0.0946 | 3.0 | 855 | 0.3966 | 0.8331 | 0.7816 | 0.8013 | 0.9168 |
|
59 |
+
| 0.0492 | 4.0 | 1140 | 0.4321 | 0.8295 | 0.8127 | 0.8189 | 0.9187 |
|
60 |
+
| 0.034 | 5.0 | 1425 | 0.4523 | 0.8123 | 0.8122 | 0.8097 | 0.9241 |
|
61 |
+
| 0.0221 | 6.0 | 1710 | 0.5082 | 0.8111 | 0.8109 | 0.8097 | 0.9222 |
|
62 |
+
| 0.015 | 7.0 | 1995 | 0.5375 | 0.8587 | 0.7934 | 0.8194 | 0.9212 |
|
63 |
+
| 0.0121 | 8.0 | 2280 | 0.5233 | 0.8542 | 0.8256 | 0.8373 | 0.9292 |
|
64 |
+
| 0.0077 | 9.0 | 2565 | 0.5259 | 0.8277 | 0.8235 | 0.8246 | 0.9286 |
|
65 |
+
| 0.0063 | 10.0 | 2850 | 0.5609 | 0.8558 | 0.8234 | 0.8375 | 0.9294 |
|
66 |
+
| 0.003 | 11.0 | 3135 | 0.5672 | 0.8176 | 0.8197 | 0.8169 | 0.9271 |
|
67 |
+
| 0.002 | 12.0 | 3420 | 0.5968 | 0.8555 | 0.8184 | 0.8347 | 0.9294 |
|
68 |
+
| 0.0021 | 13.0 | 3705 | 0.5846 | 0.8315 | 0.8222 | 0.8263 | 0.9269 |
|
69 |
+
| 0.0016 | 14.0 | 3990 | 0.5905 | 0.8352 | 0.8167 | 0.8251 | 0.9263 |
|
70 |
+
|
71 |
+
|
72 |
+
### Framework versions
|
73 |
+
|
74 |
+
- Transformers 4.34.0
|
75 |
+
- Pytorch 2.0.1+cu118
|
76 |
+
- Datasets 2.14.5
|
77 |
+
- Tokenizers 0.14.1
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 464775913
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4a5794c56c9836c70f0c072371ca97458a0faa5e4f2901ede93e4d1f8d423836
|
3 |
size 464775913
|