End of training
Browse files- README.md +79 -0
- pytorch_model.bin +1 -1
README.md
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
base_model: pdelobelle/robbert-v2-dutch-base
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- recall
|
8 |
+
- accuracy
|
9 |
+
model-index:
|
10 |
+
- name: robbert0510_lrate2.5b16
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# robbert0510_lrate2.5b16
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [pdelobelle/robbert-v2-dutch-base](https://huggingface.co/pdelobelle/robbert-v2-dutch-base) on an unknown dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 0.5475
|
22 |
+
- Precisions: 0.8362
|
23 |
+
- Recall: 0.8085
|
24 |
+
- F-measure: 0.8194
|
25 |
+
- Accuracy: 0.9125
|
26 |
+
|
27 |
+
## Model description
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Intended uses & limitations
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training and evaluation data
|
36 |
+
|
37 |
+
More information needed
|
38 |
+
|
39 |
+
## Training procedure
|
40 |
+
|
41 |
+
### Training hyperparameters
|
42 |
+
|
43 |
+
The following hyperparameters were used during training:
|
44 |
+
- learning_rate: 2.5e-05
|
45 |
+
- train_batch_size: 16
|
46 |
+
- eval_batch_size: 16
|
47 |
+
- seed: 42
|
48 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
49 |
+
- lr_scheduler_type: linear
|
50 |
+
- num_epochs: 16
|
51 |
+
|
52 |
+
### Training results
|
53 |
+
|
54 |
+
| Training Loss | Epoch | Step | Validation Loss | Precisions | Recall | F-measure | Accuracy |
|
55 |
+
|:-------------:|:-----:|:----:|:---------------:|:----------:|:------:|:---------:|:--------:|
|
56 |
+
| 0.7157 | 1.0 | 236 | 0.4352 | 0.8401 | 0.6698 | 0.6760 | 0.8659 |
|
57 |
+
| 0.3813 | 2.0 | 472 | 0.3616 | 0.8396 | 0.7184 | 0.7109 | 0.8865 |
|
58 |
+
| 0.2577 | 3.0 | 708 | 0.3348 | 0.7982 | 0.7441 | 0.7329 | 0.8974 |
|
59 |
+
| 0.1921 | 4.0 | 944 | 0.3984 | 0.7735 | 0.7155 | 0.7226 | 0.8923 |
|
60 |
+
| 0.1359 | 5.0 | 1180 | 0.3888 | 0.8225 | 0.7811 | 0.7985 | 0.9052 |
|
61 |
+
| 0.0971 | 6.0 | 1416 | 0.4391 | 0.8534 | 0.7724 | 0.7925 | 0.9073 |
|
62 |
+
| 0.0723 | 7.0 | 1652 | 0.4377 | 0.8301 | 0.7890 | 0.8052 | 0.9087 |
|
63 |
+
| 0.0523 | 8.0 | 1888 | 0.4648 | 0.8081 | 0.7923 | 0.7955 | 0.9090 |
|
64 |
+
| 0.0417 | 9.0 | 2124 | 0.4922 | 0.7994 | 0.8128 | 0.8032 | 0.9109 |
|
65 |
+
| 0.0352 | 10.0 | 2360 | 0.5001 | 0.8281 | 0.7925 | 0.8079 | 0.9128 |
|
66 |
+
| 0.0295 | 11.0 | 2596 | 0.5171 | 0.8272 | 0.7938 | 0.8084 | 0.9110 |
|
67 |
+
| 0.0217 | 12.0 | 2832 | 0.5475 | 0.8362 | 0.8085 | 0.8194 | 0.9125 |
|
68 |
+
| 0.0157 | 13.0 | 3068 | 0.5540 | 0.8278 | 0.8071 | 0.8160 | 0.9130 |
|
69 |
+
| 0.0196 | 14.0 | 3304 | 0.5659 | 0.8259 | 0.7924 | 0.8047 | 0.9116 |
|
70 |
+
| 0.0134 | 15.0 | 3540 | 0.5725 | 0.8203 | 0.7877 | 0.8017 | 0.9113 |
|
71 |
+
| 0.0106 | 16.0 | 3776 | 0.5762 | 0.8216 | 0.7842 | 0.7997 | 0.9109 |
|
72 |
+
|
73 |
+
|
74 |
+
### Framework versions
|
75 |
+
|
76 |
+
- Transformers 4.34.0
|
77 |
+
- Pytorch 2.0.1+cu118
|
78 |
+
- Datasets 2.14.5
|
79 |
+
- Tokenizers 0.14.0
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 464775913
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c61611e3896e9a018c71ebf97edf15f63f8ff5a2e8977af0383bcb2bd3d15e3e
|
3 |
size 464775913
|