File size: 2,247 Bytes
651f578 f63074e 651f578 f63074e 651f578 f63074e 651f578 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
---
license: mit
base_model: pdelobelle/robbert-v2-dutch-base
tags:
- generated_from_trainer
metrics:
- recall
- accuracy
model-index:
- name: robbert0410_lrate2.5b4
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# robbert0410_lrate2.5b4
This model is a fine-tuned version of [pdelobelle/robbert-v2-dutch-base](https://huggingface.co/pdelobelle/robbert-v2-dutch-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6518
- Precisions: 0.8163
- Recall: 0.7936
- F-measure: 0.8017
- Accuracy: 0.9116
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2.5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precisions | Recall | F-measure | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:----------:|:------:|:---------:|:--------:|
| 0.62 | 1.0 | 942 | 0.4300 | 0.8644 | 0.6922 | 0.7030 | 0.8830 |
| 0.3475 | 2.0 | 1884 | 0.4044 | 0.8222 | 0.7322 | 0.7464 | 0.8970 |
| 0.2227 | 3.0 | 2826 | 0.4658 | 0.7715 | 0.7573 | 0.7476 | 0.9070 |
| 0.1488 | 4.0 | 3768 | 0.5292 | 0.8193 | 0.7461 | 0.7655 | 0.9045 |
| 0.0983 | 5.0 | 4710 | 0.5855 | 0.7938 | 0.7749 | 0.7829 | 0.9049 |
| 0.0652 | 6.0 | 5652 | 0.6155 | 0.8170 | 0.7826 | 0.7976 | 0.9100 |
| 0.0419 | 7.0 | 6594 | 0.6306 | 0.8072 | 0.7929 | 0.7971 | 0.9123 |
| 0.032 | 8.0 | 7536 | 0.6518 | 0.8163 | 0.7936 | 0.8017 | 0.9116 |
### Framework versions
- Transformers 4.34.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.14.0
|