Thomasboosinger
commited on
Update handler.py
Browse files- handler.py +14 -14
handler.py
CHANGED
@@ -6,30 +6,30 @@ from typing import Dict, List, Any
|
|
6 |
|
7 |
class EndpointHandler():
|
8 |
def __init__(self, model_path=""):
|
9 |
-
# Initialize the pipeline with the specified model
|
|
|
10 |
self.pipeline = pipeline(task="zero-shot-object-detection", model=model_path, device=0)
|
11 |
|
12 |
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
|
13 |
"""
|
14 |
-
|
|
|
15 |
|
16 |
Args:
|
17 |
data (Dict[str, Any]): The input data containing an encoded image and candidate labels.
|
18 |
|
19 |
Returns:
|
20 |
-
|
21 |
"""
|
22 |
-
#
|
23 |
-
|
24 |
-
|
25 |
-
# Decode the base64 image to a PIL image
|
26 |
-
image = Image.open(BytesIO(base64.b64decode(inputs['image'])))
|
27 |
|
28 |
-
#
|
29 |
-
candidate_labels=inputs
|
30 |
|
31 |
-
#
|
32 |
-
detection_results = self.pipeline(image=image, candidate_labels=
|
33 |
|
34 |
-
#
|
35 |
-
return detection_results
|
|
|
6 |
|
7 |
class EndpointHandler():
|
8 |
def __init__(self, model_path=""):
|
9 |
+
# Initialize the zero-shot object detection pipeline with the specified model
|
10 |
+
# and set the device to GPU for faster computation.
|
11 |
self.pipeline = pipeline(task="zero-shot-object-detection", model=model_path, device=0)
|
12 |
|
13 |
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
|
14 |
"""
|
15 |
+
Handles incoming requests for zero-shot object detection, decoding the image
|
16 |
+
and predicting labels based on provided candidates.
|
17 |
|
18 |
Args:
|
19 |
data (Dict[str, Any]): The input data containing an encoded image and candidate labels.
|
20 |
|
21 |
Returns:
|
22 |
+
List[Dict[str, Any]]: Predictions with labels and scores for the detected objects.
|
23 |
"""
|
24 |
+
# Decode the base64-encoded image to a PIL Image object for processing.
|
25 |
+
image_data = data.get("inputs", {}).get('image', '')
|
26 |
+
image = Image.open(BytesIO(base64.b64decode(image_data)))
|
|
|
|
|
27 |
|
28 |
+
# Extract candidate labels from the input data.
|
29 |
+
candidate_labels = data.get("inputs", {}).get("candidates", [])
|
30 |
|
31 |
+
# Perform zero-shot object detection using the provided image and candidate labels.
|
32 |
+
detection_results = self.pipeline(image=image, candidate_labels=candidate_labels)
|
33 |
|
34 |
+
# Return the detection results directly, which should match the expected output structure.
|
35 |
+
return detection_results
|