Model save
Browse files- README.md +110 -0
- model.safetensors +1 -1
README.md
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
base_model: google/vivit-b-16x2-kinetics400
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- accuracy
|
8 |
+
model-index:
|
9 |
+
- name: vivit-b-16x2-kinetics400-ft-76388
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# vivit-b-16x2-kinetics400-ft-76388
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [google/vivit-b-16x2-kinetics400](https://huggingface.co/google/vivit-b-16x2-kinetics400) on an unknown dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 0.8950
|
21 |
+
- Accuracy: 0.6124
|
22 |
+
|
23 |
+
## Model description
|
24 |
+
|
25 |
+
More information needed
|
26 |
+
|
27 |
+
## Intended uses & limitations
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Training and evaluation data
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training procedure
|
36 |
+
|
37 |
+
### Training hyperparameters
|
38 |
+
|
39 |
+
The following hyperparameters were used during training:
|
40 |
+
- learning_rate: 5e-05
|
41 |
+
- train_batch_size: 8
|
42 |
+
- eval_batch_size: 8
|
43 |
+
- seed: 42
|
44 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
45 |
+
- lr_scheduler_type: linear
|
46 |
+
- lr_scheduler_warmup_ratio: 0.1
|
47 |
+
- training_steps: 5500
|
48 |
+
|
49 |
+
### Training results
|
50 |
+
|
51 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
52 |
+
|:-------------:|:-------:|:----:|:---------------:|:--------:|
|
53 |
+
| 1.1083 | 0.0202 | 111 | 1.1112 | 0.3347 |
|
54 |
+
| 1.0789 | 1.0202 | 222 | 1.0576 | 0.4259 |
|
55 |
+
| 1.0767 | 2.0202 | 333 | 1.0863 | 0.4246 |
|
56 |
+
| 1.1114 | 3.0202 | 444 | 1.1061 | 0.3704 |
|
57 |
+
| 1.0832 | 4.0202 | 555 | 1.0536 | 0.4193 |
|
58 |
+
| 1.0622 | 5.0202 | 666 | 1.0720 | 0.4577 |
|
59 |
+
| 1.0874 | 6.0202 | 777 | 1.0304 | 0.4709 |
|
60 |
+
| 0.9742 | 7.0202 | 888 | 1.0340 | 0.4511 |
|
61 |
+
| 0.9848 | 8.0202 | 999 | 1.0367 | 0.4669 |
|
62 |
+
| 1.12 | 9.0202 | 1110 | 1.0269 | 0.4193 |
|
63 |
+
| 1.0484 | 10.0202 | 1221 | 1.0105 | 0.4511 |
|
64 |
+
| 0.9445 | 11.0202 | 1332 | 1.0052 | 0.4881 |
|
65 |
+
| 1.032 | 12.0202 | 1443 | 1.0365 | 0.4524 |
|
66 |
+
| 0.987 | 13.0202 | 1554 | 1.0019 | 0.5106 |
|
67 |
+
| 1.0797 | 14.0202 | 1665 | 1.0128 | 0.4656 |
|
68 |
+
| 0.9196 | 15.0202 | 1776 | 1.0431 | 0.5013 |
|
69 |
+
| 1.0727 | 16.0202 | 1887 | 1.0016 | 0.5344 |
|
70 |
+
| 0.9481 | 17.0202 | 1998 | 0.9983 | 0.5265 |
|
71 |
+
| 0.9034 | 18.0202 | 2109 | 1.0221 | 0.5013 |
|
72 |
+
| 0.8569 | 19.0202 | 2220 | 0.9825 | 0.5265 |
|
73 |
+
| 0.9256 | 20.0202 | 2331 | 0.9678 | 0.5397 |
|
74 |
+
| 1.0311 | 21.0202 | 2442 | 0.9574 | 0.5106 |
|
75 |
+
| 0.8651 | 22.0202 | 2553 | 1.0048 | 0.4987 |
|
76 |
+
| 0.9384 | 23.0202 | 2664 | 0.9717 | 0.5225 |
|
77 |
+
| 0.9545 | 24.0202 | 2775 | 0.9763 | 0.5172 |
|
78 |
+
| 0.9187 | 25.0202 | 2886 | 0.9628 | 0.5212 |
|
79 |
+
| 0.7953 | 26.0202 | 2997 | 0.9523 | 0.5265 |
|
80 |
+
| 0.8793 | 27.0202 | 3108 | 0.9977 | 0.5370 |
|
81 |
+
| 0.7897 | 28.0202 | 3219 | 0.9965 | 0.5317 |
|
82 |
+
| 0.8034 | 29.0202 | 3330 | 0.9272 | 0.5463 |
|
83 |
+
| 0.8469 | 30.0202 | 3441 | 0.9231 | 0.5384 |
|
84 |
+
| 0.79 | 31.0202 | 3552 | 0.9281 | 0.5728 |
|
85 |
+
| 0.8516 | 32.0202 | 3663 | 0.9310 | 0.5569 |
|
86 |
+
| 0.8138 | 33.0202 | 3774 | 0.9582 | 0.5675 |
|
87 |
+
| 0.8322 | 34.0202 | 3885 | 0.9741 | 0.5622 |
|
88 |
+
| 0.8064 | 35.0202 | 3996 | 0.9573 | 0.5754 |
|
89 |
+
| 0.8767 | 36.0202 | 4107 | 0.9290 | 0.5714 |
|
90 |
+
| 0.7978 | 37.0202 | 4218 | 0.9449 | 0.5728 |
|
91 |
+
| 0.8113 | 38.0202 | 4329 | 0.9493 | 0.5780 |
|
92 |
+
| 0.8065 | 39.0202 | 4440 | 0.9015 | 0.5926 |
|
93 |
+
| 0.7989 | 40.0202 | 4551 | 0.9139 | 0.5886 |
|
94 |
+
| 0.6323 | 41.0202 | 4662 | 0.9004 | 0.5992 |
|
95 |
+
| 0.6847 | 42.0202 | 4773 | 0.9083 | 0.6124 |
|
96 |
+
| 0.7711 | 43.0202 | 4884 | 0.9023 | 0.5979 |
|
97 |
+
| 0.5815 | 44.0202 | 4995 | 0.9247 | 0.6058 |
|
98 |
+
| 0.8821 | 45.0202 | 5106 | 0.9071 | 0.6058 |
|
99 |
+
| 0.7436 | 46.0202 | 5217 | 0.8924 | 0.6085 |
|
100 |
+
| 0.6863 | 47.0202 | 5328 | 0.8965 | 0.6111 |
|
101 |
+
| 0.7035 | 48.0202 | 5439 | 0.8941 | 0.6045 |
|
102 |
+
| 0.6348 | 49.0111 | 5500 | 0.8950 | 0.6124 |
|
103 |
+
|
104 |
+
|
105 |
+
### Framework versions
|
106 |
+
|
107 |
+
- Transformers 4.41.2
|
108 |
+
- Pytorch 1.13.0+cu117
|
109 |
+
- Datasets 2.20.0
|
110 |
+
- Tokenizers 0.19.1
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 151789748
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:586e40427feab186e5cb11bbbcf818417779a6966eeaf2b0ae1c8f2e2592d227
|
3 |
size 151789748
|