File size: 20,758 Bytes
992a400
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
from typing import List, Optional, Tuple, Union
import warnings, os, torch
import torch.nn as nn

from transformers import AutoConfig, PretrainedConfig, PreTrainedModel, AutoModelForCausalLM, AutoTokenizer
from transformers.modeling_utils import ContextManagers, no_init_weights
from transformers.modeling_outputs import CausalLMOutputWithPast
from transformers.generation.utils import GenerateOutput
from .configuration_apollo import ApolloConfig

from .vision_tower import ApolloVisionTower
from .mm_connector import MMConnector

IGNORE_INDEX = -100
X_TOKEN_INDEX = -200


def get_model_config(config):
    default_keys = ["llm_cfg", "vision_tower_cfg", "mm_connector_cfg"]
    if hasattr(config, "_name_or_path") and len(config._name_or_path) >= 2:
        root_path = config._name_or_path
    else:
        root_path = config.resume_path

    return_pths = []
    for key in default_keys:
        cfg = getattr(config, key, None)
        if isinstance(cfg, dict):
            try:
                return_pths.append(os.path.join(root_path, key[:-4]))
            except:
                raise ValueError(f"Cannot find resume path in config for {key}!")
        elif isinstance(cfg, PretrainedConfig):
            return_pths.append(os.path.join(root_path, key[:-4]))
        elif isinstance(cfg, str):
            return_pths.append(cfg)

    return_list = []
    for pth in return_pths:
        return_list.append(AutoConfig.from_pretrained(pth, trust_remote_code=True))

    return return_list


def build_llm_and_tokenizer(
        llm_cfg: str,
        config: PretrainedConfig,
        attn_implementation=None,
        model_max_length=None,
        *args,
        **kwargs,
) -> PreTrainedModel:
    llm_arch = getattr(llm_cfg, "architectures")[0].lower()
    
    llm_path = llm_cfg._name_or_path
    llm = AutoModelForCausalLM.from_pretrained(
        llm_path, config=llm_cfg, torch_dtype=eval(config.model_dtype), *args, **kwargs
    )

    tokenizer = AutoTokenizer.from_pretrained(
        llm_path,
        model_max_length=llm_cfg.model_max_length,
        padding_side="right",
        use_fast=False,
        legacy=False,
        **kwargs
    )

    #config.hidden_size = llm.config.hidden_size
    return llm, tokenizer


class ApolloForCausalLM(PreTrainedModel):
    def __init__(self, config: ApolloConfig, *args, **kwargs):
        super().__init__(config)
        llm_cfg, vision_tower_cfg, mm_connector_cfg = get_model_config(config)
        model_dtype = getattr(config, "model_dtype", "torch.float16")
        if not hasattr(config, "model_dtype"):
            warnings.warn("model_dtype not found in config, defaulting to torch.float16.")
            config.model_dtype = model_dtype
        # Initialize weights and apply final processing

        self.lm_head = nn.Linear(llm_cfg.hidden_size, config.vocab_size, bias=False)
        self.vision_tower = ApolloVisionTower(config, vision_tower_cfg)
        self.mm_connector = MMConnector.from_pretrained(mm_connector_cfg._name_or_path)
        self.llm, self.tokenizer = build_llm_and_tokenizer(llm_cfg, config, *args, **kwargs)
        self.post_init()
        self.is_loaded = True

    def forward(
            self,
            input_ids: torch.LongTensor = None,
            attention_mask: Optional[torch.Tensor] = None,
            position_ids: Optional[torch.LongTensor] = None,
            past_key_values: Optional[List[torch.FloatTensor]] = None,
            inputs_embeds: Optional[torch.FloatTensor] = None,
            labels: Optional[torch.LongTensor] = None,
            use_cache: Optional[bool] = None,
            output_attentions: Optional[bool] = None,
            output_hidden_states: Optional[bool] = None,
            vision_input: Optional[List[torch.FloatTensor]] = None,
            data_types: Optional[List[str]] = None,
            return_dict: Optional[bool] = None,
            cache_position=None,
    ) -> Union[Tuple, CausalLMOutputWithPast]:
        
        if inputs_embeds is None:
            (
                input_ids,
                position_ids,
                attention_mask,
                past_key_values,
                inputs_embeds,
                labels
            ) = self.prepare_inputs_labels_for_multimodal(
                input_ids,
                position_ids,
                attention_mask,
                past_key_values,
                labels,
                vision_input,
                data_types
            )

        return self.get_llm().forward(
            input_ids=input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            labels=labels,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

    @torch.no_grad()
    def generate(
            self,
            inputs: Optional[torch.Tensor] = None,
            vision_input: Optional[List[torch.Tensor]] = None,
            data_types: Optional[List[str]] = None,
            **kwargs,
    ) -> Union[GenerateOutput, torch.LongTensor]:
        position_ids = kwargs.pop("position_ids", None)
        attention_mask = kwargs.pop("attention_mask", None)
        if "inputs_embeds" in kwargs:
            raise NotImplementedError("`inputs_embeds` is not supported")

        if vision_input is not None:
            (inputs, position_ids, attention_mask, _, inputs_embeds, _) = self.prepare_inputs_labels_for_multimodal(
                inputs, position_ids, attention_mask, None, None, vision_input, data_types=data_types)
        else:
            inputs_embeds = self.embed_tokens(inputs)

        return self.get_llm().generate(position_ids=position_ids, attention_mask=attention_mask,
                                       inputs_embeds=inputs_embeds, **kwargs)

    def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs):
        vision_input = kwargs.pop("vision_input", None)
        data_types = kwargs.pop("data_types", None)
        inputs = self.get_llm().prepare_inputs_for_generation(input_ids, past_key_values=past_key_values,
                                                              inputs_embeds=inputs_embeds, **kwargs)
        if vision_input is not None:
            inputs["vision_input"] = vision_input
        if data_types is not None:
            inputs["data_types"] = data_types
        return inputs

    @classmethod
    def from_pretrained(
            cls,
            pretrained_model_name_or_path: Optional[Union[str, os.PathLike]],
            *model_args,
            config: Optional[Union[PretrainedConfig, str, os.PathLike]] = None,
            cache_dir: Optional[Union[str, os.PathLike]] = None,
            ignore_mismatched_sizes: bool = False,
            force_download: bool = False,
            local_files_only: bool = False,
            token: Optional[Union[str, bool]] = None,
            revision: str = "main",
            use_safetensors: bool = None,
            **kwargs,
    ):

        return cls.load_pretrained(
            pretrained_model_name_or_path,
            *model_args,
            config=config,
            cache_dir=cache_dir,
            ignore_mismatched_sizes=ignore_mismatched_sizes,
            force_download=force_download,
            local_files_only=local_files_only,
            token=token,
            revision=revision,
            use_safetensors=use_safetensors,
            **kwargs,
        )

    def get_llm(self):
        return self.llm

    def get_vision_tower(self):
        return self.vision_tower

    def get_mm_connector(self):
        return self.mm_connector

    @classmethod
    def load_pretrained(cls, model_path_or_config, *args, **kwargs):
        kwargs.pop("config", None)
        
        if isinstance(model_path_or_config, str):
            config = AutoConfig.from_pretrained(model_path_or_config, trust_remote_code=True, **kwargs)
        elif isinstance(model_path_or_config, ApolloConfig):
            config = model_path_or_config
        else:
            raise NotImplementedError(f"wrong type, {type(model_path_or_config)} \
                                      {isinstance(model_path_or_config, ApolloConfig)}")

        model_dtype = getattr(config, "model_dtype", "torch.float16")
        if not hasattr(config, "model_dtype"):
            warnings.warn("model_dtype not found in config, defaulting to torch.float16.")
            config.model_dtype = model_dtype

        with ContextManagers([no_init_weights(_enable=True), ]):
            vlm = cls(config, *args, **kwargs)

        if hasattr(vlm, "llm") and hasattr(vlm, "vision_tower") and hasattr(vlm, "mm_connector"):
            if vlm.is_loaded:
                return vlm
            else:
                print('loading model failed!')
        else:
            print('loading model failed!')

    def _encode_mm(self, x):
        x = self.get_vision_tower()(x)
        x = self.mm_connector(x)
        return x

    def encode_mm_minibatch(self, x):
        split_sizes = [x_s[0].shape[0] for x_s in x]
        x = [torch.split(torch.cat([x_s[i] for x_s in x], dim=0), self.config.encode_batch_size) for i in
             range(self.get_vision_tower().num_vision_encoders)]
        swapped_x = []
        for i in range(len(x[0])):
            swapped_x.append([x_s[i] for x_s in x])

        features = []
        for xx in swapped_x:
            xx = self._encode_mm(xx)
            features.append(xx)
        x = torch.cat(features, dim=0)
        x = torch.split(x, split_sizes, dim=0)
        return [xx.contiguous().view(-1, xx.shape[2]) for xx in x]

    def prepare_inputs_labels_for_multimodal(
            self, input_ids, position_ids, attention_mask, past_key_values, labels, vision_input, data_types
    ):
        vision_tower = self.get_vision_tower()
        if vision_tower is None or vision_input is None or input_ids.shape[1] == 1:
            if (
                    past_key_values is not None
                    and vision_tower is not None
                    and vision_input is not None
                    and input_ids.shape[1] == 1
            ):
                target_shape = past_key_values[-1][-1].shape[-2] + 1
                attention_mask = torch.cat(
                    (
                        attention_mask,
                        torch.ones(
                            (
                                attention_mask.shape[0],
                                target_shape - attention_mask.shape[1],
                            ),
                            dtype=attention_mask.dtype,
                            device=attention_mask.device,
                        ),
                    ),
                    dim=1,
                )
                position_ids = torch.sum(attention_mask, dim=1).unsqueeze(-1) - 1
            return (
                input_ids,
                position_ids,
                attention_mask,
                past_key_values,
                None,
                labels,
            )

        '''
            vision_input is a list of tuples, and data_type is a list of strings:
            data_type = ['image', 'video', 'video'..., 'text']
            (for one video and two image encoders)
            vision_input = 
            [
                [image(1, T, C, H, W), image(1, T, C, H, W), image(1, T, C, H, W)],
                [video(Nc1, C, T, H, W), video(Nc1, T, C, H, W), video(Nc1, T, C, H, W)],
                [video(Nc2, C, T, H, W), video(Nc2, T, C, H, W), video(Nc2, T, C, H, W)],
            ]
            -> video encoders typlically expect (C,T,H,W), images expect (C,H,W).
        '''
        # ====================================================================================================
        merged_mm_features = self.encode_mm_minibatch(vision_input)

        if not getattr(self.config, "tune_language_model", True) and getattr(self.config, "use_mm_start_end", False):
            raise NotImplementedError
        # ====================================================================================================
        # Let's just add dummy tensors if they do not exist,
        # it is a headache to deal with None all the time.
        # But it is not ideal, and if you have a better idea,
        # please open an issue / submit a PR, thanks.
        _labels = labels
        _position_ids = position_ids
        _attention_mask = attention_mask
        if attention_mask is None:
            attention_mask = torch.ones_like(input_ids, dtype=torch.bool)
        else:
            attention_mask = attention_mask.bool()
        if position_ids is None:
            position_ids = torch.arange(0, input_ids.shape[1], dtype=torch.long, device=input_ids.device)
        if labels is None:
            labels = torch.full_like(input_ids, IGNORE_INDEX)

        # remove the padding using attention_mask
        input_ids_copy = input_ids.clone()
        # kentang-mit@: Otherwise tokenizer out of bounds. Embeddings of image tokens will not be used.
        input_ids_copy[input_ids_copy == X_TOKEN_INDEX] = 0
        input_embeds = self.get_llm().model.embed_tokens(input_ids_copy)

        input_ids = [
            cur_input_ids[cur_attention_mask] for cur_input_ids, cur_attention_mask in zip(input_ids, attention_mask)
        ]
        input_embeds_1 = [
            cur_input_embeds[cur_attention_mask]
            for cur_input_embeds, cur_attention_mask in zip(input_embeds, attention_mask)
        ]
        labels = [cur_labels[cur_attention_mask] for cur_labels, cur_attention_mask in zip(labels, attention_mask)]
        # input_ids, new_input_embeds = self.inputs_merger(input_ids, input_embeds_1, merged_mm_features)
        new_labels = []
        new_input_embeds = []
        # print("BEFORE BATCH LOOP:", len(input_ids), input_ids[0].shape, input_ids[0].device, [(x == X_TOKEN_INDEX).sum() for x in input_ids])
        # kentang-mit@: If some part of the model is executed in the loop, the the loop length needs to be a constant.
        for batch_idx, (cur_labels, cur_input_ids, mm_features) in enumerate(
                zip(labels, input_ids, merged_mm_features)):
            cur_input_ids = input_ids[batch_idx]
            num_mm = (cur_input_ids == X_TOKEN_INDEX).sum()
            if num_mm == 0:
                cur_input_embeds_1 = input_embeds_1[batch_idx]
                cur_input_embeds = torch.cat([cur_input_embeds_1, mm_features[0:0]], dim=0)
                new_input_embeds.append(cur_input_embeds)
                new_labels.append(cur_labels)
                # kenang-mit@: we do not have placeholdr image for text-only data now.
                continue

            if mm_features.shape[0] != num_mm:
                print(data_types[batch_idx])
                assert num_mm == len(
                    mm_features), f'Error in {data_types[batch_idx]}{num_mm}=/={len(mm_features)} not the same number of vision tokens in and vision embeddings!'

            cur_input_embeds = input_embeds_1[batch_idx]
            image_token_indices = (
                    [-1] + torch.where(cur_input_ids == X_TOKEN_INDEX)[0].tolist() + [cur_input_ids.shape[0]]
            )
            cur_input_ids_noim = []
            cur_labels = labels[batch_idx]
            cur_labels_noim = []
            cur_input_embeds_no_im = []
            for i in range(len(image_token_indices) - 1):
                cur_input_ids_noim.append(cur_input_ids[image_token_indices[i] + 1: image_token_indices[i + 1]])
                cur_labels_noim.append(cur_labels[image_token_indices[i] + 1: image_token_indices[i + 1]])
                cur_input_embeds_no_im.append(cur_input_embeds[image_token_indices[i] + 1: image_token_indices[i + 1]])

            cur_new_input_embeds = []
            cur_new_labels = []
            for i in range(num_mm + 1):
                cur_new_input_embeds.append(cur_input_embeds_no_im[i])
                # print("cur_new_input_embeds1", cur_new_input_embeds.shape[-1])
                cur_new_labels.append(cur_labels_noim[i])
                if i < num_mm:
                    cur_image_features = mm_features[i:i + 1]
                    cur_new_input_embeds.append(cur_image_features)
                    # print("cur_new_input_embeds2", cur_new_input_embeds.shape[-1])
                    cur_new_labels.append(
                        torch.full(
                            (cur_image_features.shape[0],),
                            IGNORE_INDEX,
                            device=cur_labels.device,
                            dtype=cur_labels.dtype,
                        )
                    )

            cur_new_input_embeds = torch.cat(cur_new_input_embeds)
            cur_new_labels = torch.cat(cur_new_labels)

            new_input_embeds.append(cur_new_input_embeds)
            new_labels.append(cur_new_labels)

        # Truncate sequences to max length as image embeddings can make the sequence longer
        tokenizer_model_max_length = getattr(self.get_llm().config, "tokenizer_model_max_length", None)
        if tokenizer_model_max_length is not None:
            if any(len(x) > tokenizer_model_max_length for x in new_input_embeds):
                priny("Inputs truncated!")
            new_input_embeds = [x[:tokenizer_model_max_length] for x in new_input_embeds]
            new_labels = [x[:tokenizer_model_max_length] for x in new_labels]
        # Combine them
        max_len = max(x.shape[0] for x in new_input_embeds)
        batch_size = len(new_input_embeds)

        new_input_embeds_padded = []
        new_labels_padded = torch.full(
            (batch_size, max_len),
            IGNORE_INDEX,
            dtype=new_labels[0].dtype,
            device=new_labels[0].device,
        )
        attention_mask = torch.zeros(
            (batch_size, max_len),
            dtype=attention_mask.dtype,
            device=attention_mask.device,
        )
        position_ids = torch.zeros((batch_size, max_len), dtype=position_ids.dtype, device=position_ids.device)
        for i, (cur_new_embed, cur_new_labels) in enumerate(zip(new_input_embeds, new_labels)):
            cur_len = cur_new_embed.shape[0]
            if getattr(self.get_llm().config, "tokenizer_padding_side", "right") == "left":
                new_input_embeds_padded.append(
                    torch.cat(
                        (
                            torch.zeros(
                                (max_len - cur_len, cur_new_embed.shape[1]),
                                dtype=cur_new_embed.dtype,
                                device=cur_new_embed.device,
                            ),
                            cur_new_embed,
                        ),
                        dim=0,
                    )
                )
                if cur_len > 0:
                    new_labels_padded[i, -cur_len:] = cur_new_labels
                    attention_mask[i, -cur_len:] = True
                    position_ids[i, -cur_len:] = torch.arange(
                        0, cur_len, dtype=position_ids.dtype, device=position_ids.device
                    )
            else:
                new_input_embeds_padded.append(
                    torch.cat(
                        (
                            cur_new_embed,
                            torch.zeros(
                                (max_len - cur_len, cur_new_embed.shape[1]),
                                dtype=cur_new_embed.dtype,
                                device=cur_new_embed.device,
                            ),
                        ),
                        dim=0,
                    )
                )
                if cur_len > 0:
                    new_labels_padded[i, :cur_len] = cur_new_labels
                    attention_mask[i, :cur_len] = True
                    position_ids[i, :cur_len] = torch.arange(
                        0, cur_len, dtype=position_ids.dtype, device=position_ids.device
                    )

        new_input_embeds = torch.stack(new_input_embeds_padded, dim=0)

        if _labels is None:
            new_labels = None
        else:
            new_labels = new_labels_padded

        if _attention_mask is None:
            attention_mask = None
        else:
            attention_mask = attention_mask.to(dtype=_attention_mask.dtype)

        if _position_ids is None:
            position_ids = None

        return (
            None,
            position_ids,
            attention_mask,
            past_key_values,
            new_input_embeds,
            new_labels,
        )