Upload DogeForCausalLM
Browse files- config.json +43 -43
- modeling_doge.py +1 -18
config.json
CHANGED
@@ -1,43 +1,43 @@
|
|
1 |
-
{
|
2 |
-
"_name_or_path": "SmallDoge/Doge-60M",
|
3 |
-
"architectures": [
|
4 |
-
"DogeForCausalLM"
|
5 |
-
],
|
6 |
-
"attention_dropout": 0.0,
|
7 |
-
"auto_map": {
|
8 |
-
"AutoConfig": "configuration_doge.DogeConfig",
|
9 |
-
"AutoModelForCausalLM": "modeling_doge.DogeForCausalLM"
|
10 |
-
},
|
11 |
-
"bos_token_id": 0,
|
12 |
-
"dynamic_mask_ratio": 0.0,
|
13 |
-
"eos_token_id": 1,
|
14 |
-
"expert_retrieval_size": 256,
|
15 |
-
"hidden_act": "silu",
|
16 |
-
"hidden_bias": false,
|
17 |
-
"hidden_dropout": 0.0,
|
18 |
-
"hidden_size": 512,
|
19 |
-
"initializer_range": 0.02,
|
20 |
-
"intermediate_size": 1024,
|
21 |
-
"is_moe": false,
|
22 |
-
"max_position_embeddings": 2048,
|
23 |
-
"model_type": "doge",
|
24 |
-
"num_attention_heads": 4,
|
25 |
-
"num_cdmoe_experts": 16348,
|
26 |
-
"num_cdmoe_experts_per_head": 8,
|
27 |
-
"num_cdmoe_heads": 4,
|
28 |
-
"num_hidden_layers": 16,
|
29 |
-
"num_key_value_heads": 2,
|
30 |
-
"pad_token_id": 2,
|
31 |
-
"rms_norm_eps": 1e-06,
|
32 |
-
"rope_scaling": {
|
33 |
-
"factor": 4.0,
|
34 |
-
"original_max_position_embeddings": 2048,
|
35 |
-
"rope_type": "dynamic"
|
36 |
-
},
|
37 |
-
"rope_theta": 10000.0,
|
38 |
-
"tie_word_embeddings": true,
|
39 |
-
"torch_dtype": "float32",
|
40 |
-
"transformers_version": "4.48.3",
|
41 |
-
"use_cache": true,
|
42 |
-
"vocab_size": 32768
|
43 |
-
}
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "SmallDoge/Doge-60M",
|
3 |
+
"architectures": [
|
4 |
+
"DogeForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"auto_map": {
|
8 |
+
"AutoConfig": "configuration_doge.DogeConfig",
|
9 |
+
"AutoModelForCausalLM": "modeling_doge.DogeForCausalLM"
|
10 |
+
},
|
11 |
+
"bos_token_id": 0,
|
12 |
+
"dynamic_mask_ratio": 0.0,
|
13 |
+
"eos_token_id": 1,
|
14 |
+
"expert_retrieval_size": 256,
|
15 |
+
"hidden_act": "silu",
|
16 |
+
"hidden_bias": false,
|
17 |
+
"hidden_dropout": 0.0,
|
18 |
+
"hidden_size": 512,
|
19 |
+
"initializer_range": 0.02,
|
20 |
+
"intermediate_size": 1024,
|
21 |
+
"is_moe": false,
|
22 |
+
"max_position_embeddings": 2048,
|
23 |
+
"model_type": "doge",
|
24 |
+
"num_attention_heads": 4,
|
25 |
+
"num_cdmoe_experts": 16348,
|
26 |
+
"num_cdmoe_experts_per_head": 8,
|
27 |
+
"num_cdmoe_heads": 4,
|
28 |
+
"num_hidden_layers": 16,
|
29 |
+
"num_key_value_heads": 2,
|
30 |
+
"pad_token_id": 2,
|
31 |
+
"rms_norm_eps": 1e-06,
|
32 |
+
"rope_scaling": {
|
33 |
+
"factor": 4.0,
|
34 |
+
"original_max_position_embeddings": 2048,
|
35 |
+
"rope_type": "dynamic"
|
36 |
+
},
|
37 |
+
"rope_theta": 10000.0,
|
38 |
+
"tie_word_embeddings": true,
|
39 |
+
"torch_dtype": "float32",
|
40 |
+
"transformers_version": "4.48.3",
|
41 |
+
"use_cache": true,
|
42 |
+
"vocab_size": 32768
|
43 |
+
}
|
modeling_doge.py
CHANGED
@@ -864,27 +864,10 @@ class DogeModel(DogePreTrainedModel):
|
|
864 |
past_key_values: Cache,
|
865 |
output_attentions: bool,
|
866 |
):
|
867 |
-
|
868 |
-
if attention_mask is not None and (attention_mask == 0.0).any():
|
869 |
-
return attention_mask
|
870 |
-
return None
|
871 |
-
|
872 |
-
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
|
873 |
-
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
|
874 |
-
# to infer the attention mask.
|
875 |
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
876 |
using_static_cache = isinstance(past_key_values, StaticCache)
|
877 |
|
878 |
-
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
|
879 |
-
if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
|
880 |
-
if AttentionMaskConverter._ignore_causal_mask_sdpa(
|
881 |
-
attention_mask,
|
882 |
-
inputs_embeds=input_tensor,
|
883 |
-
past_key_values_length=past_seen_tokens,
|
884 |
-
is_training=self.training,
|
885 |
-
):
|
886 |
-
return None
|
887 |
-
|
888 |
dtype, device = input_tensor.dtype, input_tensor.device
|
889 |
sequence_length = input_tensor.shape[1]
|
890 |
if using_static_cache:
|
|
|
864 |
past_key_values: Cache,
|
865 |
output_attentions: bool,
|
866 |
):
|
867 |
+
# We have to provide attention_mask for dynamic mask computation
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
868 |
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
869 |
using_static_cache = isinstance(past_key_values, StaticCache)
|
870 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
871 |
dtype, device = input_tensor.dtype, input_tensor.device
|
872 |
sequence_length = input_tensor.shape[1]
|
873 |
if using_static_cache:
|