--- tags: - generated_from_trainer metrics: - precision - recall - accuracy model-index: - name: train results: [] --- # train This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.9723 - Macro F1: 0.7972 - Precision: 0.8006 - Recall: 0.8116 - Kappa: 0.7148 - Accuracy: 0.8116 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 128 - seed: 25 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Macro F1 | Precision | Recall | Kappa | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 101 | 1.2223 | 0.5901 | 0.5634 | 0.6884 | 0.4728 | 0.6884 | | No log | 2.0 | 203 | 1.0235 | 0.6570 | 0.6224 | 0.7303 | 0.5496 | 0.7303 | | No log | 3.0 | 304 | 0.9087 | 0.7101 | 0.7166 | 0.7623 | 0.6226 | 0.7623 | | No log | 4.0 | 406 | 0.8119 | 0.7500 | 0.7346 | 0.7808 | 0.6711 | 0.7808 | | 0.9826 | 5.0 | 507 | 0.8113 | 0.7821 | 0.7832 | 0.8030 | 0.6989 | 0.8030 | | 0.9826 | 6.0 | 609 | 0.8290 | 0.7765 | 0.7719 | 0.7943 | 0.6919 | 0.7943 | | 0.9826 | 7.0 | 710 | 0.8481 | 0.7756 | 0.7696 | 0.7980 | 0.6907 | 0.7980 | | 0.9826 | 8.0 | 812 | 0.8620 | 0.7820 | 0.7747 | 0.8030 | 0.6974 | 0.8030 | | 0.9826 | 9.0 | 913 | 0.8717 | 0.7891 | 0.7878 | 0.8042 | 0.7055 | 0.8042 | | 0.3153 | 10.0 | 1015 | 0.9027 | 0.7872 | 0.7879 | 0.8067 | 0.7070 | 0.8067 | | 0.3153 | 11.0 | 1116 | 0.9492 | 0.7902 | 0.7915 | 0.8067 | 0.7066 | 0.8067 | | 0.3153 | 12.0 | 1218 | 0.9462 | 0.7877 | 0.7850 | 0.8042 | 0.7037 | 0.8042 | | 0.3153 | 13.0 | 1319 | 0.9696 | 0.7881 | 0.7892 | 0.8030 | 0.7022 | 0.8030 | | 0.3153 | 14.0 | 1421 | 0.9658 | 0.7931 | 0.7975 | 0.8067 | 0.7090 | 0.8067 | | 0.1362 | 14.93 | 1515 | 0.9723 | 0.7972 | 0.8006 | 0.8116 | 0.7148 | 0.8116 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Tokenizers 0.13.3