Commit
·
5c3cdd2
1
Parent(s):
6dbf5bb
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
metrics:
|
5 |
+
- precision
|
6 |
+
- recall
|
7 |
+
- accuracy
|
8 |
+
model-index:
|
9 |
+
- name: train
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# train
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on an unknown dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 0.8776
|
21 |
+
- Macro F1: 0.8019
|
22 |
+
- Precision: 0.8062
|
23 |
+
- Recall: 0.8128
|
24 |
+
- Kappa: 0.7158
|
25 |
+
- Accuracy: 0.8128
|
26 |
+
|
27 |
+
## Model description
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Intended uses & limitations
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training and evaluation data
|
36 |
+
|
37 |
+
More information needed
|
38 |
+
|
39 |
+
## Training procedure
|
40 |
+
|
41 |
+
### Training hyperparameters
|
42 |
+
|
43 |
+
The following hyperparameters were used during training:
|
44 |
+
- learning_rate: 2e-05
|
45 |
+
- train_batch_size: 16
|
46 |
+
- eval_batch_size: 128
|
47 |
+
- seed: 25
|
48 |
+
- gradient_accumulation_steps: 2
|
49 |
+
- total_train_batch_size: 32
|
50 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
+
- lr_scheduler_type: linear
|
52 |
+
- num_epochs: 15
|
53 |
+
|
54 |
+
### Training results
|
55 |
+
|
56 |
+
| Training Loss | Epoch | Step | Validation Loss | Macro F1 | Precision | Recall | Kappa | Accuracy |
|
57 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:--------:|
|
58 |
+
| No log | 1.0 | 101 | 1.1216 | 0.6286 | 0.5851 | 0.7094 | 0.5110 | 0.7094 |
|
59 |
+
| No log | 2.0 | 203 | 0.9280 | 0.6797 | 0.6829 | 0.7438 | 0.5734 | 0.7438 |
|
60 |
+
| No log | 3.0 | 304 | 0.8106 | 0.7296 | 0.7227 | 0.7759 | 0.6335 | 0.7759 |
|
61 |
+
| No log | 4.0 | 406 | 0.7705 | 0.7814 | 0.7822 | 0.8030 | 0.6985 | 0.8030 |
|
62 |
+
| 0.9926 | 5.0 | 507 | 0.7413 | 0.7792 | 0.7719 | 0.8005 | 0.6899 | 0.8005 |
|
63 |
+
| 0.9926 | 6.0 | 609 | 0.7339 | 0.7930 | 0.7858 | 0.8128 | 0.7099 | 0.8128 |
|
64 |
+
| 0.9926 | 7.0 | 710 | 0.7714 | 0.7789 | 0.7768 | 0.7906 | 0.6863 | 0.7906 |
|
65 |
+
| 0.9926 | 8.0 | 812 | 0.7817 | 0.7938 | 0.7861 | 0.8128 | 0.7108 | 0.8128 |
|
66 |
+
| 0.9926 | 9.0 | 913 | 0.8029 | 0.7905 | 0.7885 | 0.8067 | 0.7046 | 0.8067 |
|
67 |
+
| 0.3377 | 10.0 | 1015 | 0.8392 | 0.7953 | 0.7922 | 0.8091 | 0.7090 | 0.8091 |
|
68 |
+
| 0.3377 | 11.0 | 1116 | 0.8399 | 0.7984 | 0.7981 | 0.8116 | 0.7139 | 0.8116 |
|
69 |
+
| 0.3377 | 12.0 | 1218 | 0.8519 | 0.8036 | 0.8099 | 0.8153 | 0.7184 | 0.8153 |
|
70 |
+
| 0.3377 | 13.0 | 1319 | 0.8683 | 0.8058 | 0.8167 | 0.8165 | 0.7206 | 0.8165 |
|
71 |
+
| 0.3377 | 14.0 | 1421 | 0.8745 | 0.8022 | 0.8068 | 0.8128 | 0.7160 | 0.8128 |
|
72 |
+
| 0.1504 | 14.93 | 1515 | 0.8776 | 0.8019 | 0.8062 | 0.8128 | 0.7158 | 0.8128 |
|
73 |
+
|
74 |
+
|
75 |
+
### Framework versions
|
76 |
+
|
77 |
+
- Transformers 4.29.2
|
78 |
+
- Pytorch 2.0.1+cu118
|
79 |
+
- Tokenizers 0.13.3
|