train / README.md
SADAF-IMAMU's picture
update model card README.md
c1445de
|
raw
history blame
3.02 kB
metadata
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - accuracy
model-index:
  - name: train
    results: []

train

This model is a fine-tuned version of aubmindlab/bert-base-arabertv02 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9723
  • Macro F1: 0.7972
  • Precision: 0.8006
  • Recall: 0.8116
  • Kappa: 0.7148
  • Accuracy: 0.8116

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 128
  • seed: 25
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Macro F1 Precision Recall Kappa Accuracy
No log 1.0 101 1.2223 0.5901 0.5634 0.6884 0.4728 0.6884
No log 2.0 203 1.0235 0.6570 0.6224 0.7303 0.5496 0.7303
No log 3.0 304 0.9087 0.7101 0.7166 0.7623 0.6226 0.7623
No log 4.0 406 0.8119 0.7500 0.7346 0.7808 0.6711 0.7808
0.9826 5.0 507 0.8113 0.7821 0.7832 0.8030 0.6989 0.8030
0.9826 6.0 609 0.8290 0.7765 0.7719 0.7943 0.6919 0.7943
0.9826 7.0 710 0.8481 0.7756 0.7696 0.7980 0.6907 0.7980
0.9826 8.0 812 0.8620 0.7820 0.7747 0.8030 0.6974 0.8030
0.9826 9.0 913 0.8717 0.7891 0.7878 0.8042 0.7055 0.8042
0.3153 10.0 1015 0.9027 0.7872 0.7879 0.8067 0.7070 0.8067
0.3153 11.0 1116 0.9492 0.7902 0.7915 0.8067 0.7066 0.8067
0.3153 12.0 1218 0.9462 0.7877 0.7850 0.8042 0.7037 0.8042
0.3153 13.0 1319 0.9696 0.7881 0.7892 0.8030 0.7022 0.8030
0.3153 14.0 1421 0.9658 0.7931 0.7975 0.8067 0.7090 0.8067
0.1362 14.93 1515 0.9723 0.7972 0.8006 0.8116 0.7148 0.8116

Framework versions

  • Transformers 4.30.2
  • Pytorch 2.0.1+cu118
  • Tokenizers 0.13.3