metadata
tags:
- generated_from_trainer
metrics:
- precision
- recall
- accuracy
model-index:
- name: train
results: []
train
This model is a fine-tuned version of aubmindlab/bert-base-arabertv02 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.9723
- Macro F1: 0.7972
- Precision: 0.8006
- Recall: 0.8116
- Kappa: 0.7148
- Accuracy: 0.8116
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 128
- seed: 25
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
Training results
Training Loss | Epoch | Step | Validation Loss | Macro F1 | Precision | Recall | Kappa | Accuracy |
---|---|---|---|---|---|---|---|---|
No log | 1.0 | 101 | 1.2223 | 0.5901 | 0.5634 | 0.6884 | 0.4728 | 0.6884 |
No log | 2.0 | 203 | 1.0235 | 0.6570 | 0.6224 | 0.7303 | 0.5496 | 0.7303 |
No log | 3.0 | 304 | 0.9087 | 0.7101 | 0.7166 | 0.7623 | 0.6226 | 0.7623 |
No log | 4.0 | 406 | 0.8119 | 0.7500 | 0.7346 | 0.7808 | 0.6711 | 0.7808 |
0.9826 | 5.0 | 507 | 0.8113 | 0.7821 | 0.7832 | 0.8030 | 0.6989 | 0.8030 |
0.9826 | 6.0 | 609 | 0.8290 | 0.7765 | 0.7719 | 0.7943 | 0.6919 | 0.7943 |
0.9826 | 7.0 | 710 | 0.8481 | 0.7756 | 0.7696 | 0.7980 | 0.6907 | 0.7980 |
0.9826 | 8.0 | 812 | 0.8620 | 0.7820 | 0.7747 | 0.8030 | 0.6974 | 0.8030 |
0.9826 | 9.0 | 913 | 0.8717 | 0.7891 | 0.7878 | 0.8042 | 0.7055 | 0.8042 |
0.3153 | 10.0 | 1015 | 0.9027 | 0.7872 | 0.7879 | 0.8067 | 0.7070 | 0.8067 |
0.3153 | 11.0 | 1116 | 0.9492 | 0.7902 | 0.7915 | 0.8067 | 0.7066 | 0.8067 |
0.3153 | 12.0 | 1218 | 0.9462 | 0.7877 | 0.7850 | 0.8042 | 0.7037 | 0.8042 |
0.3153 | 13.0 | 1319 | 0.9696 | 0.7881 | 0.7892 | 0.8030 | 0.7022 | 0.8030 |
0.3153 | 14.0 | 1421 | 0.9658 | 0.7931 | 0.7975 | 0.8067 | 0.7090 | 0.8067 |
0.1362 | 14.93 | 1515 | 0.9723 | 0.7972 | 0.8006 | 0.8116 | 0.7148 | 0.8116 |
Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu118
- Tokenizers 0.13.3