File size: 3,016 Bytes
5c3cdd2 e211bf3 5c3cdd2 e211bf3 5c3cdd2 4e2334c 5c3cdd2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 |
---
tags:
- generated_from_trainer
metrics:
- precision
- recall
- accuracy
model-index:
- name: train
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# train
This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9948
- Macro F1: 0.7856
- Precision: 0.7820
- Recall: 0.7956
- Kappa: 0.6940
- Accuracy: 0.7956
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 128
- seed: 25
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
### Training results
| Training Loss | Epoch | Step | Validation Loss | Macro F1 | Precision | Recall | Kappa | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 101 | 1.1562 | 0.6031 | 0.5561 | 0.7044 | 0.4967 | 0.7044 |
| No log | 2.0 | 203 | 0.9119 | 0.7151 | 0.7107 | 0.7672 | 0.6236 | 0.7672 |
| No log | 3.0 | 304 | 0.8493 | 0.7280 | 0.7139 | 0.7734 | 0.6381 | 0.7734 |
| No log | 4.0 | 406 | 0.8087 | 0.7455 | 0.7632 | 0.7648 | 0.6421 | 0.7648 |
| 0.9431 | 5.0 | 507 | 0.7735 | 0.7779 | 0.7741 | 0.7931 | 0.6858 | 0.7931 |
| 0.9431 | 6.0 | 609 | 0.8201 | 0.7753 | 0.7735 | 0.7869 | 0.6797 | 0.7869 |
| 0.9431 | 7.0 | 710 | 0.8564 | 0.7886 | 0.7883 | 0.8017 | 0.7004 | 0.8017 |
| 0.9431 | 8.0 | 812 | 0.8712 | 0.7799 | 0.7754 | 0.7894 | 0.6854 | 0.7894 |
| 0.9431 | 9.0 | 913 | 0.9142 | 0.7775 | 0.7751 | 0.7869 | 0.6811 | 0.7869 |
| 0.2851 | 10.0 | 1015 | 0.9007 | 0.7820 | 0.7764 | 0.7943 | 0.6913 | 0.7943 |
| 0.2851 | 11.0 | 1116 | 0.9425 | 0.7859 | 0.7825 | 0.7956 | 0.6940 | 0.7956 |
| 0.2851 | 12.0 | 1218 | 0.9798 | 0.7815 | 0.7797 | 0.7906 | 0.6869 | 0.7906 |
| 0.2851 | 13.0 | 1319 | 0.9895 | 0.7895 | 0.7860 | 0.7993 | 0.7003 | 0.7993 |
| 0.2851 | 14.0 | 1421 | 0.9872 | 0.7854 | 0.7813 | 0.7943 | 0.6935 | 0.7943 |
| 0.1273 | 14.93 | 1515 | 0.9948 | 0.7856 | 0.7820 | 0.7956 | 0.6940 | 0.7956 |
### Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu118
- Tokenizers 0.13.3
|