--- base_model: aubmindlab/bert-base-arabertv02 tags: - generated_from_trainer metrics: - precision - recall - accuracy model-index: - name: Type_of_relation results: [] --- # Type_of_relation This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7828 - Macro F1: 0.9002 - Precision: 0.8999 - Recall: 0.9007 - Kappa: 0.8082 - Accuracy: 0.9007 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 128 - seed: 25 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Macro F1 | Precision | Recall | Kappa | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:---------:|:------:|:------:|:--------:| | 0.492 | 1.0 | 697 | 0.3226 | 0.8904 | 0.8920 | 0.8923 | 0.7872 | 0.8923 | | 0.3283 | 2.0 | 1395 | 0.3107 | 0.9000 | 0.9001 | 0.9010 | 0.8071 | 0.9010 | | 0.2371 | 3.0 | 2092 | 0.3224 | 0.8959 | 0.8973 | 0.8949 | 0.8020 | 0.8949 | | 0.1817 | 4.0 | 2790 | 0.3469 | 0.9000 | 0.9007 | 0.9000 | 0.8082 | 0.9000 | | 0.1372 | 5.0 | 3487 | 0.4185 | 0.8966 | 0.8980 | 0.8962 | 0.8034 | 0.8962 | | 0.0779 | 6.0 | 4185 | 0.4717 | 0.8989 | 0.8991 | 0.8992 | 0.8059 | 0.8992 | | 0.0676 | 7.0 | 4882 | 0.5415 | 0.8962 | 0.8972 | 0.8958 | 0.8014 | 0.8958 | | 0.042 | 8.0 | 5580 | 0.6031 | 0.8984 | 0.8988 | 0.8982 | 0.8057 | 0.8982 | | 0.0335 | 9.0 | 6277 | 0.6551 | 0.9017 | 0.9019 | 0.9025 | 0.8106 | 0.9025 | | 0.0239 | 10.0 | 6975 | 0.7116 | 0.8975 | 0.8974 | 0.8980 | 0.8029 | 0.8980 | | 0.0168 | 11.0 | 7672 | 0.7130 | 0.8976 | 0.8976 | 0.8984 | 0.8029 | 0.8984 | | 0.019 | 12.0 | 8370 | 0.7464 | 0.9011 | 0.9007 | 0.9018 | 0.8101 | 0.9018 | | 0.0121 | 13.0 | 9067 | 0.7709 | 0.9006 | 0.9003 | 0.9010 | 0.8091 | 0.9010 | | 0.0089 | 14.0 | 9765 | 0.7790 | 0.9002 | 0.9002 | 0.9007 | 0.8081 | 0.9007 | | 0.0068 | 14.99 | 10455 | 0.7828 | 0.9002 | 0.8999 | 0.9007 | 0.8082 | 0.9007 | ### Framework versions - Transformers 4.36.0 - Pytorch 2.1.0+cu118 - Tokenizers 0.15.0