Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) Storm-7B - GGUF - Model creator: https://huggingface.co/jieliu/ - Original model: https://huggingface.co/jieliu/Storm-7B/ | Name | Quant method | Size | | ---- | ---- | ---- | | [Storm-7B.Q2_K.gguf](https://huggingface.co/RichardErkhov/jieliu_-_Storm-7B-gguf/blob/main/Storm-7B.Q2_K.gguf) | Q2_K | 2.53GB | | [Storm-7B.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/jieliu_-_Storm-7B-gguf/blob/main/Storm-7B.IQ3_XS.gguf) | IQ3_XS | 2.81GB | | [Storm-7B.IQ3_S.gguf](https://huggingface.co/RichardErkhov/jieliu_-_Storm-7B-gguf/blob/main/Storm-7B.IQ3_S.gguf) | IQ3_S | 2.96GB | | [Storm-7B.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/jieliu_-_Storm-7B-gguf/blob/main/Storm-7B.Q3_K_S.gguf) | Q3_K_S | 2.95GB | | [Storm-7B.IQ3_M.gguf](https://huggingface.co/RichardErkhov/jieliu_-_Storm-7B-gguf/blob/main/Storm-7B.IQ3_M.gguf) | IQ3_M | 3.06GB | | [Storm-7B.Q3_K.gguf](https://huggingface.co/RichardErkhov/jieliu_-_Storm-7B-gguf/blob/main/Storm-7B.Q3_K.gguf) | Q3_K | 3.28GB | | [Storm-7B.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/jieliu_-_Storm-7B-gguf/blob/main/Storm-7B.Q3_K_M.gguf) | Q3_K_M | 3.28GB | | [Storm-7B.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/jieliu_-_Storm-7B-gguf/blob/main/Storm-7B.Q3_K_L.gguf) | Q3_K_L | 3.56GB | | [Storm-7B.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/jieliu_-_Storm-7B-gguf/blob/main/Storm-7B.IQ4_XS.gguf) | IQ4_XS | 3.67GB | | [Storm-7B.Q4_0.gguf](https://huggingface.co/RichardErkhov/jieliu_-_Storm-7B-gguf/blob/main/Storm-7B.Q4_0.gguf) | Q4_0 | 3.83GB | | [Storm-7B.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/jieliu_-_Storm-7B-gguf/blob/main/Storm-7B.IQ4_NL.gguf) | IQ4_NL | 3.87GB | | [Storm-7B.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/jieliu_-_Storm-7B-gguf/blob/main/Storm-7B.Q4_K_S.gguf) | Q4_K_S | 3.86GB | | [Storm-7B.Q4_K.gguf](https://huggingface.co/RichardErkhov/jieliu_-_Storm-7B-gguf/blob/main/Storm-7B.Q4_K.gguf) | Q4_K | 4.07GB | | [Storm-7B.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/jieliu_-_Storm-7B-gguf/blob/main/Storm-7B.Q4_K_M.gguf) | Q4_K_M | 4.07GB | | [Storm-7B.Q4_1.gguf](https://huggingface.co/RichardErkhov/jieliu_-_Storm-7B-gguf/blob/main/Storm-7B.Q4_1.gguf) | Q4_1 | 4.24GB | | [Storm-7B.Q5_0.gguf](https://huggingface.co/RichardErkhov/jieliu_-_Storm-7B-gguf/blob/main/Storm-7B.Q5_0.gguf) | Q5_0 | 4.65GB | | [Storm-7B.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/jieliu_-_Storm-7B-gguf/blob/main/Storm-7B.Q5_K_S.gguf) | Q5_K_S | 4.65GB | | [Storm-7B.Q5_K.gguf](https://huggingface.co/RichardErkhov/jieliu_-_Storm-7B-gguf/blob/main/Storm-7B.Q5_K.gguf) | Q5_K | 4.78GB | | [Storm-7B.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/jieliu_-_Storm-7B-gguf/blob/main/Storm-7B.Q5_K_M.gguf) | Q5_K_M | 4.78GB | | [Storm-7B.Q5_1.gguf](https://huggingface.co/RichardErkhov/jieliu_-_Storm-7B-gguf/blob/main/Storm-7B.Q5_1.gguf) | Q5_1 | 5.07GB | | [Storm-7B.Q6_K.gguf](https://huggingface.co/RichardErkhov/jieliu_-_Storm-7B-gguf/blob/main/Storm-7B.Q6_K.gguf) | Q6_K | 5.53GB | | [Storm-7B.Q8_0.gguf](https://huggingface.co/RichardErkhov/jieliu_-_Storm-7B-gguf/blob/main/Storm-7B.Q8_0.gguf) | Q8_0 | 7.17GB | Original model description: --- license: apache-2.0 library_name: transformers tags: - storm - mistral - openchat - RLAIF - reward model language: - en base_model: openchat/openchat-3.5-0106 datasets: - berkeley-nest/Nectar --- # Storm-7B - **Developed by**: [Jie Liu](https://jieliu.site/) \\(^{*1,2}\\), [Zhanhui Zhou](https://scholar.google.com/citations?user=SbACfYQAAAAJ&hl=zh-CN) \\(^{*2}\\), [Jiaheng Liu](https://liujiaheng.github.io/) \\(^{2}\\), [Xingyuan Bu](https://scholar.google.com.hk/citations?user=cqYaRhUAAAAJ&hl=zh-CN) \\(^{2}\\), [Chao Yang](https://scholar.google.com/citations?user=5KRbHPMAAAAJ&hl=zh-CN) \\(^{2}\\), [Han-Sen Zhong](https://scholar.google.com.hk/citations?user=X_ZfX8sAAAAJ&hl=zh-CN) \\(^{\dag 2}\\), [Wanli Ouyang](https://wlouyang.github.io/) \\(^{1,2}\\). - \\(^{1}\\)MMLab, The Chinese University of Hong Kong \\(^{2}\\)Shanghai AI Laboratory - Paper: [Iterative Length-Regularized Direct Preference Optimization: A Case Study on Improving 7B Language Models to GPT-4 Level](https://arxiv.org/pdf/2406.11817) - Finetuned from the model: [openchat-3.5-0106](https://huggingface.co/openchat/openchat-3.5-0106) - Dataset: [berkeley-nest/Nectar](https://huggingface.co/datasets/berkeley-nest/Nectar) - Reward Model: [Starling-RM-34B](https://huggingface.co/Nexusflow/Starling-RM-34B) Please see our paper for more details. ## Introduction We released Storm-7B, the first open-source language model comparable to the GPT-4 series on the [AlpacaEval 2.0](https://tatsu-lab.github.io/alpaca_eval/) leaderboard. Recent studies show that DPO benefits from iterative training with online preferences labeled by a trained reward model. In this work, we identify a pitfall of vanilla iterative DPO - improved response quality can lead to increased verbosity. To address this, we introduce iterative length-regularized DPO (iLR-DPO) to penalize response length. Our empirical results show that iLR-DPO can enhance a 7B model to perform on par with GPT-4 **without increasing verbosity**. ## Performance Our 7B model achieves a **50.5%** length-controlled win rate against GPT-4 Preview on AlpacaEval 2.0.