File size: 9,104 Bytes
2004d94 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
Quantization made by Richard Erkhov.
[Github](https://github.com/RichardErkhov)
[Discord](https://discord.gg/pvy7H8DZMG)
[Request more models](https://github.com/RichardErkhov/quant_request)
Qwen2.5-7B-Instruct-abliterated-v3 - GGUF
- Model creator: https://huggingface.co/huihui-ai/
- Original model: https://huggingface.co/huihui-ai/Qwen2.5-7B-Instruct-abliterated-v3/
| Name | Quant method | Size |
| ---- | ---- | ---- |
| [Qwen2.5-7B-Instruct-abliterated-v3.Q2_K.gguf](https://huggingface.co/RichardErkhov/huihui-ai_-_Qwen2.5-7B-Instruct-abliterated-v3-gguf/blob/main/Qwen2.5-7B-Instruct-abliterated-v3.Q2_K.gguf) | Q2_K | 2.81GB |
| [Qwen2.5-7B-Instruct-abliterated-v3.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/huihui-ai_-_Qwen2.5-7B-Instruct-abliterated-v3-gguf/blob/main/Qwen2.5-7B-Instruct-abliterated-v3.Q3_K_S.gguf) | Q3_K_S | 3.25GB |
| [Qwen2.5-7B-Instruct-abliterated-v3.Q3_K.gguf](https://huggingface.co/RichardErkhov/huihui-ai_-_Qwen2.5-7B-Instruct-abliterated-v3-gguf/blob/main/Qwen2.5-7B-Instruct-abliterated-v3.Q3_K.gguf) | Q3_K | 3.55GB |
| [Qwen2.5-7B-Instruct-abliterated-v3.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/huihui-ai_-_Qwen2.5-7B-Instruct-abliterated-v3-gguf/blob/main/Qwen2.5-7B-Instruct-abliterated-v3.Q3_K_M.gguf) | Q3_K_M | 3.55GB |
| [Qwen2.5-7B-Instruct-abliterated-v3.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/huihui-ai_-_Qwen2.5-7B-Instruct-abliterated-v3-gguf/blob/main/Qwen2.5-7B-Instruct-abliterated-v3.Q3_K_L.gguf) | Q3_K_L | 3.81GB |
| [Qwen2.5-7B-Instruct-abliterated-v3.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/huihui-ai_-_Qwen2.5-7B-Instruct-abliterated-v3-gguf/blob/main/Qwen2.5-7B-Instruct-abliterated-v3.IQ4_XS.gguf) | IQ4_XS | 3.96GB |
| [Qwen2.5-7B-Instruct-abliterated-v3.Q4_0.gguf](https://huggingface.co/RichardErkhov/huihui-ai_-_Qwen2.5-7B-Instruct-abliterated-v3-gguf/blob/main/Qwen2.5-7B-Instruct-abliterated-v3.Q4_0.gguf) | Q4_0 | 4.13GB |
| [Qwen2.5-7B-Instruct-abliterated-v3.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/huihui-ai_-_Qwen2.5-7B-Instruct-abliterated-v3-gguf/blob/main/Qwen2.5-7B-Instruct-abliterated-v3.IQ4_NL.gguf) | IQ4_NL | 4.16GB |
| [Qwen2.5-7B-Instruct-abliterated-v3.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/huihui-ai_-_Qwen2.5-7B-Instruct-abliterated-v3-gguf/blob/main/Qwen2.5-7B-Instruct-abliterated-v3.Q4_K_S.gguf) | Q4_K_S | 4.15GB |
| [Qwen2.5-7B-Instruct-abliterated-v3.Q4_K.gguf](https://huggingface.co/RichardErkhov/huihui-ai_-_Qwen2.5-7B-Instruct-abliterated-v3-gguf/blob/main/Qwen2.5-7B-Instruct-abliterated-v3.Q4_K.gguf) | Q4_K | 4.36GB |
| [Qwen2.5-7B-Instruct-abliterated-v3.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/huihui-ai_-_Qwen2.5-7B-Instruct-abliterated-v3-gguf/blob/main/Qwen2.5-7B-Instruct-abliterated-v3.Q4_K_M.gguf) | Q4_K_M | 4.36GB |
| [Qwen2.5-7B-Instruct-abliterated-v3.Q4_1.gguf](https://huggingface.co/RichardErkhov/huihui-ai_-_Qwen2.5-7B-Instruct-abliterated-v3-gguf/blob/main/Qwen2.5-7B-Instruct-abliterated-v3.Q4_1.gguf) | Q4_1 | 4.54GB |
| [Qwen2.5-7B-Instruct-abliterated-v3.Q5_0.gguf](https://huggingface.co/RichardErkhov/huihui-ai_-_Qwen2.5-7B-Instruct-abliterated-v3-gguf/blob/main/Qwen2.5-7B-Instruct-abliterated-v3.Q5_0.gguf) | Q5_0 | 4.95GB |
| [Qwen2.5-7B-Instruct-abliterated-v3.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/huihui-ai_-_Qwen2.5-7B-Instruct-abliterated-v3-gguf/blob/main/Qwen2.5-7B-Instruct-abliterated-v3.Q5_K_S.gguf) | Q5_K_S | 4.95GB |
| [Qwen2.5-7B-Instruct-abliterated-v3.Q5_K.gguf](https://huggingface.co/RichardErkhov/huihui-ai_-_Qwen2.5-7B-Instruct-abliterated-v3-gguf/blob/main/Qwen2.5-7B-Instruct-abliterated-v3.Q5_K.gguf) | Q5_K | 5.07GB |
| [Qwen2.5-7B-Instruct-abliterated-v3.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/huihui-ai_-_Qwen2.5-7B-Instruct-abliterated-v3-gguf/blob/main/Qwen2.5-7B-Instruct-abliterated-v3.Q5_K_M.gguf) | Q5_K_M | 5.07GB |
| [Qwen2.5-7B-Instruct-abliterated-v3.Q5_1.gguf](https://huggingface.co/RichardErkhov/huihui-ai_-_Qwen2.5-7B-Instruct-abliterated-v3-gguf/blob/main/Qwen2.5-7B-Instruct-abliterated-v3.Q5_1.gguf) | Q5_1 | 5.36GB |
| [Qwen2.5-7B-Instruct-abliterated-v3.Q6_K.gguf](https://huggingface.co/RichardErkhov/huihui-ai_-_Qwen2.5-7B-Instruct-abliterated-v3-gguf/blob/main/Qwen2.5-7B-Instruct-abliterated-v3.Q6_K.gguf) | Q6_K | 5.82GB |
| [Qwen2.5-7B-Instruct-abliterated-v3.Q8_0.gguf](https://huggingface.co/RichardErkhov/huihui-ai_-_Qwen2.5-7B-Instruct-abliterated-v3-gguf/blob/main/Qwen2.5-7B-Instruct-abliterated-v3.Q8_0.gguf) | Q8_0 | 7.54GB |
Original model description:
---
library_name: transformers
license: apache-2.0
license_link: https://huggingface.co/huihui-ai/Qwen2.5-7B-Instruct-abliterated-v3/blob/main/LICENSE
language:
- en
pipeline_tag: text-generation
base_model: Qwen/Qwen2.5-7B-Instruct
tags:
- chat
- abliterated
- uncensored
---
# huihui-ai/Qwen2.5-7B-Instruct-abliterated-v3
This is an uncensored version of [Qwen/Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct) created with abliteration (see [remove-refusals-with-transformers](https://github.com/Sumandora/remove-refusals-with-transformers) to know more about it).
This is a crude, proof-of-concept implementation to remove refusals from an LLM model without using TransformerLens.
The test results are not very good, but compared to before, there is much less [garbled text](https://huggingface.co/huihui-ai/Qwen2.5-7B-Instruct-abliterated-v2/discussions/2).
## Usage
You can use this model in your applications by loading it with Hugging Face's `transformers` library:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
# Load the model and tokenizer
model_name = "huihui-ai/Qwen2.5-7B-Instruct-abliterated-v3"
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
# Initialize conversation context
initial_messages = [
{"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."}
]
messages = initial_messages.copy() # Copy the initial conversation context
# Enter conversation loop
while True:
# Get user input
user_input = input("User: ").strip() # Strip leading and trailing spaces
# If the user types '/exit', end the conversation
if user_input.lower() == "/exit":
print("Exiting chat.")
break
# If the user types '/clean', reset the conversation context
if user_input.lower() == "/clean":
messages = initial_messages.copy() # Reset conversation context
print("Chat history cleared. Starting a new conversation.")
continue
# If input is empty, prompt the user and continue
if not user_input:
print("Input cannot be empty. Please enter something.")
continue
# Add user input to the conversation
messages.append({"role": "user", "content": user_input})
# Build the chat template
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
# Tokenize input and prepare it for the model
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
# Generate a response from the model
generated_ids = model.generate(
**model_inputs,
max_new_tokens=8192
)
# Extract model output, removing special tokens
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
# Add the model's response to the conversation
messages.append({"role": "assistant", "content": response})
# Print the model's response
print(f"Qwen: {response}")
```
## Evaluations
The following data has been re-evaluated and calculated as the average for each test.
| Benchmark | Qwen2.5-7B-Instruct | Qwen2.5-7B-Instruct-abliterated-v3 | Qwen2.5-7B-Instruct-abliterated-v2 | Qwen2.5-7B-Instruct-abliterated |
|-------------|---------------------|------------------------------------|------------------------------------|---------------------------------|
| IF_Eval | 76.44 | 72.64 | **77.82** | 76.49 |
| MMLU Pro | **43.12** | 39.14 | 42.03 | 41.71 |
| TruthfulQA | 62.46 | 57.27 | 57.81 | **64.92** |
| BBH | **53.92** | 50.67 | 53.01 | 52.77 |
| GPQA | 31.91 | 31.65 | **32.17** | 31.97 |
The script used for evaluation can be found inside this repository under /eval.sh, or click [here](https://huggingface.co/huihui-ai/Qwen2.5-7B-Instruct-abliterated-v3/blob/main/eval.sh)
|