FrenzyBiscuit
commited on
Upload folder using huggingface_hub
Browse files- LICENSE +202 -0
- README.md +235 -0
- config.json +44 -0
- generation_config.json +14 -0
- merges.txt +0 -0
- model.safetensors.index.json +346 -0
- output.safetensors +3 -0
- sparse_attention_config.json +1 -0
- tokenizer.json +0 -0
- tokenizer_config.json +207 -0
- vocab.json +0 -0
LICENSE
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
Apache License
|
3 |
+
Version 2.0, January 2004
|
4 |
+
http://www.apache.org/licenses/
|
5 |
+
|
6 |
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
7 |
+
|
8 |
+
1. Definitions.
|
9 |
+
|
10 |
+
"License" shall mean the terms and conditions for use, reproduction,
|
11 |
+
and distribution as defined by Sections 1 through 9 of this document.
|
12 |
+
|
13 |
+
"Licensor" shall mean the copyright owner or entity authorized by
|
14 |
+
the copyright owner that is granting the License.
|
15 |
+
|
16 |
+
"Legal Entity" shall mean the union of the acting entity and all
|
17 |
+
other entities that control, are controlled by, or are under common
|
18 |
+
control with that entity. For the purposes of this definition,
|
19 |
+
"control" means (i) the power, direct or indirect, to cause the
|
20 |
+
direction or management of such entity, whether by contract or
|
21 |
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
22 |
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
23 |
+
|
24 |
+
"You" (or "Your") shall mean an individual or Legal Entity
|
25 |
+
exercising permissions granted by this License.
|
26 |
+
|
27 |
+
"Source" form shall mean the preferred form for making modifications,
|
28 |
+
including but not limited to software source code, documentation
|
29 |
+
source, and configuration files.
|
30 |
+
|
31 |
+
"Object" form shall mean any form resulting from mechanical
|
32 |
+
transformation or translation of a Source form, including but
|
33 |
+
not limited to compiled object code, generated documentation,
|
34 |
+
and conversions to other media types.
|
35 |
+
|
36 |
+
"Work" shall mean the work of authorship, whether in Source or
|
37 |
+
Object form, made available under the License, as indicated by a
|
38 |
+
copyright notice that is included in or attached to the work
|
39 |
+
(an example is provided in the Appendix below).
|
40 |
+
|
41 |
+
"Derivative Works" shall mean any work, whether in Source or Object
|
42 |
+
form, that is based on (or derived from) the Work and for which the
|
43 |
+
editorial revisions, annotations, elaborations, or other modifications
|
44 |
+
represent, as a whole, an original work of authorship. For the purposes
|
45 |
+
of this License, Derivative Works shall not include works that remain
|
46 |
+
separable from, or merely link (or bind by name) to the interfaces of,
|
47 |
+
the Work and Derivative Works thereof.
|
48 |
+
|
49 |
+
"Contribution" shall mean any work of authorship, including
|
50 |
+
the original version of the Work and any modifications or additions
|
51 |
+
to that Work or Derivative Works thereof, that is intentionally
|
52 |
+
submitted to Licensor for inclusion in the Work by the copyright owner
|
53 |
+
or by an individual or Legal Entity authorized to submit on behalf of
|
54 |
+
the copyright owner. For the purposes of this definition, "submitted"
|
55 |
+
means any form of electronic, verbal, or written communication sent
|
56 |
+
to the Licensor or its representatives, including but not limited to
|
57 |
+
communication on electronic mailing lists, source code control systems,
|
58 |
+
and issue tracking systems that are managed by, or on behalf of, the
|
59 |
+
Licensor for the purpose of discussing and improving the Work, but
|
60 |
+
excluding communication that is conspicuously marked or otherwise
|
61 |
+
designated in writing by the copyright owner as "Not a Contribution."
|
62 |
+
|
63 |
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
64 |
+
on behalf of whom a Contribution has been received by Licensor and
|
65 |
+
subsequently incorporated within the Work.
|
66 |
+
|
67 |
+
2. Grant of Copyright License. Subject to the terms and conditions of
|
68 |
+
this License, each Contributor hereby grants to You a perpetual,
|
69 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
70 |
+
copyright license to reproduce, prepare Derivative Works of,
|
71 |
+
publicly display, publicly perform, sublicense, and distribute the
|
72 |
+
Work and such Derivative Works in Source or Object form.
|
73 |
+
|
74 |
+
3. Grant of Patent License. Subject to the terms and conditions of
|
75 |
+
this License, each Contributor hereby grants to You a perpetual,
|
76 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
77 |
+
(except as stated in this section) patent license to make, have made,
|
78 |
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
79 |
+
where such license applies only to those patent claims licensable
|
80 |
+
by such Contributor that are necessarily infringed by their
|
81 |
+
Contribution(s) alone or by combination of their Contribution(s)
|
82 |
+
with the Work to which such Contribution(s) was submitted. If You
|
83 |
+
institute patent litigation against any entity (including a
|
84 |
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
85 |
+
or a Contribution incorporated within the Work constitutes direct
|
86 |
+
or contributory patent infringement, then any patent licenses
|
87 |
+
granted to You under this License for that Work shall terminate
|
88 |
+
as of the date such litigation is filed.
|
89 |
+
|
90 |
+
4. Redistribution. You may reproduce and distribute copies of the
|
91 |
+
Work or Derivative Works thereof in any medium, with or without
|
92 |
+
modifications, and in Source or Object form, provided that You
|
93 |
+
meet the following conditions:
|
94 |
+
|
95 |
+
(a) You must give any other recipients of the Work or
|
96 |
+
Derivative Works a copy of this License; and
|
97 |
+
|
98 |
+
(b) You must cause any modified files to carry prominent notices
|
99 |
+
stating that You changed the files; and
|
100 |
+
|
101 |
+
(c) You must retain, in the Source form of any Derivative Works
|
102 |
+
that You distribute, all copyright, patent, trademark, and
|
103 |
+
attribution notices from the Source form of the Work,
|
104 |
+
excluding those notices that do not pertain to any part of
|
105 |
+
the Derivative Works; and
|
106 |
+
|
107 |
+
(d) If the Work includes a "NOTICE" text file as part of its
|
108 |
+
distribution, then any Derivative Works that You distribute must
|
109 |
+
include a readable copy of the attribution notices contained
|
110 |
+
within such NOTICE file, excluding those notices that do not
|
111 |
+
pertain to any part of the Derivative Works, in at least one
|
112 |
+
of the following places: within a NOTICE text file distributed
|
113 |
+
as part of the Derivative Works; within the Source form or
|
114 |
+
documentation, if provided along with the Derivative Works; or,
|
115 |
+
within a display generated by the Derivative Works, if and
|
116 |
+
wherever such third-party notices normally appear. The contents
|
117 |
+
of the NOTICE file are for informational purposes only and
|
118 |
+
do not modify the License. You may add Your own attribution
|
119 |
+
notices within Derivative Works that You distribute, alongside
|
120 |
+
or as an addendum to the NOTICE text from the Work, provided
|
121 |
+
that such additional attribution notices cannot be construed
|
122 |
+
as modifying the License.
|
123 |
+
|
124 |
+
You may add Your own copyright statement to Your modifications and
|
125 |
+
may provide additional or different license terms and conditions
|
126 |
+
for use, reproduction, or distribution of Your modifications, or
|
127 |
+
for any such Derivative Works as a whole, provided Your use,
|
128 |
+
reproduction, and distribution of the Work otherwise complies with
|
129 |
+
the conditions stated in this License.
|
130 |
+
|
131 |
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
132 |
+
any Contribution intentionally submitted for inclusion in the Work
|
133 |
+
by You to the Licensor shall be under the terms and conditions of
|
134 |
+
this License, without any additional terms or conditions.
|
135 |
+
Notwithstanding the above, nothing herein shall supersede or modify
|
136 |
+
the terms of any separate license agreement you may have executed
|
137 |
+
with Licensor regarding such Contributions.
|
138 |
+
|
139 |
+
6. Trademarks. This License does not grant permission to use the trade
|
140 |
+
names, trademarks, service marks, or product names of the Licensor,
|
141 |
+
except as required for reasonable and customary use in describing the
|
142 |
+
origin of the Work and reproducing the content of the NOTICE file.
|
143 |
+
|
144 |
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
145 |
+
agreed to in writing, Licensor provides the Work (and each
|
146 |
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
147 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
148 |
+
implied, including, without limitation, any warranties or conditions
|
149 |
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
150 |
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
151 |
+
appropriateness of using or redistributing the Work and assume any
|
152 |
+
risks associated with Your exercise of permissions under this License.
|
153 |
+
|
154 |
+
8. Limitation of Liability. In no event and under no legal theory,
|
155 |
+
whether in tort (including negligence), contract, or otherwise,
|
156 |
+
unless required by applicable law (such as deliberate and grossly
|
157 |
+
negligent acts) or agreed to in writing, shall any Contributor be
|
158 |
+
liable to You for damages, including any direct, indirect, special,
|
159 |
+
incidental, or consequential damages of any character arising as a
|
160 |
+
result of this License or out of the use or inability to use the
|
161 |
+
Work (including but not limited to damages for loss of goodwill,
|
162 |
+
work stoppage, computer failure or malfunction, or any and all
|
163 |
+
other commercial damages or losses), even if such Contributor
|
164 |
+
has been advised of the possibility of such damages.
|
165 |
+
|
166 |
+
9. Accepting Warranty or Additional Liability. While redistributing
|
167 |
+
the Work or Derivative Works thereof, You may choose to offer,
|
168 |
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
169 |
+
or other liability obligations and/or rights consistent with this
|
170 |
+
License. However, in accepting such obligations, You may act only
|
171 |
+
on Your own behalf and on Your sole responsibility, not on behalf
|
172 |
+
of any other Contributor, and only if You agree to indemnify,
|
173 |
+
defend, and hold each Contributor harmless for any liability
|
174 |
+
incurred by, or claims asserted against, such Contributor by reason
|
175 |
+
of your accepting any such warranty or additional liability.
|
176 |
+
|
177 |
+
END OF TERMS AND CONDITIONS
|
178 |
+
|
179 |
+
APPENDIX: How to apply the Apache License to your work.
|
180 |
+
|
181 |
+
To apply the Apache License to your work, attach the following
|
182 |
+
boilerplate notice, with the fields enclosed by brackets "[]"
|
183 |
+
replaced with your own identifying information. (Don't include
|
184 |
+
the brackets!) The text should be enclosed in the appropriate
|
185 |
+
comment syntax for the file format. We also recommend that a
|
186 |
+
file or class name and description of purpose be included on the
|
187 |
+
same "printed page" as the copyright notice for easier
|
188 |
+
identification within third-party archives.
|
189 |
+
|
190 |
+
Copyright 2024 Alibaba Cloud
|
191 |
+
|
192 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
193 |
+
you may not use this file except in compliance with the License.
|
194 |
+
You may obtain a copy of the License at
|
195 |
+
|
196 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
197 |
+
|
198 |
+
Unless required by applicable law or agreed to in writing, software
|
199 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
200 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
201 |
+
See the License for the specific language governing permissions and
|
202 |
+
limitations under the License.
|
README.md
ADDED
@@ -0,0 +1,235 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
license_link: https://huggingface.co/Qwen/Qwen2.5-7B-Instruct-1M/blob/main/LICENSE
|
4 |
+
language:
|
5 |
+
- en
|
6 |
+
pipeline_tag: text-generation
|
7 |
+
base_model: Qwen/Qwen2.5-7B
|
8 |
+
tags:
|
9 |
+
- chat
|
10 |
+
library_name: transformers
|
11 |
+
---
|
12 |
+
|
13 |
+
# Qwen2.5-7B-Instruct-1M
|
14 |
+
<a href="https://chat.qwenlm.ai/" target="_blank" style="margin: 2px;">
|
15 |
+
<img alt="Chat" src="https://img.shields.io/badge/%F0%9F%92%9C%EF%B8%8F%20Qwen%20Chat%20-536af5" style="display: inline-block; vertical-align: middle;"/>
|
16 |
+
</a>
|
17 |
+
|
18 |
+
## Introduction
|
19 |
+
|
20 |
+
Qwen2.5-1M is the long-context version of the Qwen2.5 series models, supporting a context length of up to 1M tokens. Compared to the Qwen2.5 128K version, Qwen2.5-1M demonstrates significantly improved performance in handling long-context tasks while maintaining its capability in short tasks.
|
21 |
+
|
22 |
+
The model has the following features:
|
23 |
+
- Type: Causal Language Models
|
24 |
+
- Training Stage: Pretraining & Post-training
|
25 |
+
- Architecture: transformers with RoPE, SwiGLU, RMSNorm, and Attention QKV bias
|
26 |
+
- Number of Parameters: 7.61B
|
27 |
+
- Number of Paramaters (Non-Embedding): 6.53B
|
28 |
+
- Number of Layers: 28
|
29 |
+
- Number of Attention Heads (GQA): 28 for Q and 4 for KV
|
30 |
+
- Context Length: Full 1,010,000 tokens and generation 8192 tokens
|
31 |
+
- We recommend deploying with our custom vLLM, which introduces sparse attention and length extrapolation methods to ensure efficiency and accuracy for long-context tasks. For specific guidance, refer to [this section](#processing-ultra-long-texts).
|
32 |
+
- You can also use the previous framework that supports Qwen2.5 for inference, but accuracy degradation may occur for sequences exceeding 262,144 tokens.
|
33 |
+
|
34 |
+
For more details, please refer to our [blog](https://qwenlm.github.io/blog/qwen2.5-1m/), [GitHub](https://github.com/QwenLM/Qwen2.5), [Technical Report](https://huggingface.co/papers/2501.15383), and [Documentation](https://qwen.readthedocs.io/en/latest/).
|
35 |
+
## Requirements
|
36 |
+
|
37 |
+
The code of Qwen2.5 has been in the latest Hugging face `transformers` and we advise you to use the latest version of `transformers`.
|
38 |
+
|
39 |
+
With `transformers<4.37.0`, you will encounter the following error:
|
40 |
+
```
|
41 |
+
KeyError: 'qwen2'
|
42 |
+
```
|
43 |
+
|
44 |
+
## Quickstart
|
45 |
+
|
46 |
+
Here provides a code snippet with `apply_chat_template` to show you how to load the tokenizer and model and how to generate contents.
|
47 |
+
|
48 |
+
```python
|
49 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
50 |
+
|
51 |
+
model_name = "Qwen/Qwen2.5-7B-Instruct-1M"
|
52 |
+
|
53 |
+
model = AutoModelForCausalLM.from_pretrained(
|
54 |
+
model_name,
|
55 |
+
torch_dtype="auto",
|
56 |
+
device_map="auto"
|
57 |
+
)
|
58 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
59 |
+
|
60 |
+
prompt = "Give me a short introduction to large language model."
|
61 |
+
messages = [
|
62 |
+
{"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."},
|
63 |
+
{"role": "user", "content": prompt}
|
64 |
+
]
|
65 |
+
text = tokenizer.apply_chat_template(
|
66 |
+
messages,
|
67 |
+
tokenize=False,
|
68 |
+
add_generation_prompt=True
|
69 |
+
)
|
70 |
+
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
71 |
+
|
72 |
+
generated_ids = model.generate(
|
73 |
+
**model_inputs,
|
74 |
+
max_new_tokens=512
|
75 |
+
)
|
76 |
+
generated_ids = [
|
77 |
+
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
78 |
+
]
|
79 |
+
|
80 |
+
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
81 |
+
```
|
82 |
+
|
83 |
+
### Processing Ultra Long Texts
|
84 |
+
|
85 |
+
To enhance processing accuracy and efficiency for long sequences, we have developed an advanced inference framework based on vLLM, incorporating sparse attention and length extrapolation. This approach significantly improves model generation performance for sequences exceeding 256K tokens and achieves a 3 to 7 times speedup for sequences up to 1M tokens.
|
86 |
+
|
87 |
+
Here we provide step-by-step instructions for deploying the Qwen2.5-1M models with our framework.
|
88 |
+
|
89 |
+
#### 1. System Preparation
|
90 |
+
|
91 |
+
To achieve the best performance, we recommend using GPUs with Ampere or Hopper architecture, which support optimized kernels.
|
92 |
+
|
93 |
+
Ensure your system meets the following requirements:
|
94 |
+
|
95 |
+
- **CUDA Version**: 12.1 or 12.3
|
96 |
+
- **Python Version**: >=3.9 and <=3.12
|
97 |
+
|
98 |
+
**VRAM Requirements:**
|
99 |
+
|
100 |
+
- For processing 1 million-token sequences:
|
101 |
+
- **Qwen2.5-7B-Instruct-1M**: At least 120GB VRAM (total across GPUs).
|
102 |
+
- **Qwen2.5-14B-Instruct-1M**: At least 320GB VRAM (total across GPUs).
|
103 |
+
|
104 |
+
If your GPUs do not have sufficient VRAM, you can still use Qwen2.5-1M for shorter tasks.
|
105 |
+
|
106 |
+
#### 2. Install Dependencies
|
107 |
+
|
108 |
+
For now, you need to clone the vLLM repository from our custom branch and install it manually. We are working on getting our branch merged into the main vLLM project.
|
109 |
+
|
110 |
+
```bash
|
111 |
+
git clone -b dev/dual-chunk-attn [email protected]:QwenLM/vllm.git
|
112 |
+
cd vllm
|
113 |
+
pip install -e . -v
|
114 |
+
```
|
115 |
+
|
116 |
+
|
117 |
+
#### 3. Launch vLLM
|
118 |
+
|
119 |
+
vLLM supports offline inference or launch an openai-like server.
|
120 |
+
|
121 |
+
**Example of Offline Inference**
|
122 |
+
|
123 |
+
```python
|
124 |
+
from transformers import AutoTokenizer
|
125 |
+
from vllm import LLM, SamplingParams
|
126 |
+
|
127 |
+
# Initialize the tokenizer
|
128 |
+
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-7B-Instruct-1M")
|
129 |
+
|
130 |
+
# Pass the default decoding hyperparameters of Qwen2.5-7B-Instruct
|
131 |
+
# max_tokens is for the maximum length for generation.
|
132 |
+
sampling_params = SamplingParams(temperature=0.7, top_p=0.8, repetition_penalty=1.05, max_tokens=512)
|
133 |
+
|
134 |
+
# Input the model name or path. See below for parameter explanation (after the example of openai-like server).
|
135 |
+
llm = LLM(model="Qwen/Qwen2.5-7B-Instruct-1M",
|
136 |
+
tensor_parallel_size=4,
|
137 |
+
max_model_len=1010000,
|
138 |
+
enable_chunked_prefill=True,
|
139 |
+
max_num_batched_tokens=131072,
|
140 |
+
enforce_eager=True,
|
141 |
+
# quantization="fp8", # Enabling FP8 quantization for model weights can reduce memory usage.
|
142 |
+
)
|
143 |
+
|
144 |
+
# Prepare your prompts
|
145 |
+
prompt = "Tell me something about large language models."
|
146 |
+
messages = [
|
147 |
+
{"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."},
|
148 |
+
{"role": "user", "content": prompt}
|
149 |
+
]
|
150 |
+
text = tokenizer.apply_chat_template(
|
151 |
+
messages,
|
152 |
+
tokenize=False,
|
153 |
+
add_generation_prompt=True
|
154 |
+
)
|
155 |
+
|
156 |
+
# generate outputs
|
157 |
+
outputs = llm.generate([text], sampling_params)
|
158 |
+
|
159 |
+
# Print the outputs.
|
160 |
+
for output in outputs:
|
161 |
+
prompt = output.prompt
|
162 |
+
generated_text = output.outputs[0].text
|
163 |
+
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
|
164 |
+
```
|
165 |
+
|
166 |
+
**Example of Openai-like Server**
|
167 |
+
|
168 |
+
```bash
|
169 |
+
vllm serve Qwen/Qwen2.5-7B-Instruct-1M \
|
170 |
+
--tensor-parallel-size 4 \
|
171 |
+
--max-model-len 1010000 \
|
172 |
+
--enable-chunked-prefill --max-num-batched-tokens 131072 \
|
173 |
+
--enforce-eager \
|
174 |
+
--max-num-seqs 1
|
175 |
+
|
176 |
+
# --quantization fp8 # Enabling FP8 quantization for model weights can reduce memory usage.
|
177 |
+
```
|
178 |
+
|
179 |
+
Then you can use curl or python to interact with the deployed model.
|
180 |
+
|
181 |
+
**Parameter Explanations:**
|
182 |
+
|
183 |
+
- **`--tensor-parallel-size`**
|
184 |
+
- Set to the number of GPUs you are using. Max 4 GPUs for the 7B model, and 8 GPUs for the 14B model.
|
185 |
+
|
186 |
+
- **`--max-model-len`**
|
187 |
+
- Defines the maximum input sequence length. Reduce this value if you encounter Out of Memory issues.
|
188 |
+
|
189 |
+
- **`--max-num-batched-tokens`**
|
190 |
+
- Sets the chunk size in Chunked Prefill. A smaller value reduces activation memory usage but may slow down inference.
|
191 |
+
- Recommend 131072 for optimal performance.
|
192 |
+
|
193 |
+
- **`--max-num-seqs`**
|
194 |
+
- Limits concurrent sequences processed.
|
195 |
+
|
196 |
+
You can also refer to our [Documentation](https://qwen.readthedocs.io/en/latest/deployment/vllm.html) for usage of vLLM.
|
197 |
+
|
198 |
+
#### Troubleshooting:
|
199 |
+
|
200 |
+
1. Encountering the error: "The model's max sequence length (xxxxx) is larger than the maximum number of tokens that can be stored in the KV cache."
|
201 |
+
|
202 |
+
The VRAM reserved for the KV cache is insufficient. Consider reducing the ``max_model_len`` or increasing the ``tensor_parallel_size``. Alternatively, you can reduce ``max_num_batched_tokens``, although this may significantly slow down inference.
|
203 |
+
|
204 |
+
2. Encountering the error: "torch.OutOfMemoryError: CUDA out of memory."
|
205 |
+
|
206 |
+
The VRAM reserved for activation weights is insufficient. You can try setting ``gpu_memory_utilization`` to 0.85 or lower, but be aware that this might reduce the VRAM available for the KV cache.
|
207 |
+
|
208 |
+
3. Encountering the error: "Input prompt (xxxxx tokens) + lookahead slots (0) is too long and exceeds the capacity of the block manager."
|
209 |
+
|
210 |
+
The input is too lengthy. Consider using a shorter sequence or increasing the ``max_model_len``.
|
211 |
+
|
212 |
+
## Evaluation & Performance
|
213 |
+
|
214 |
+
Detailed evaluation results are reported in this [📑 blog](https://qwenlm.github.io/blog/qwen2.5-1m/) and our [technical report](https://arxiv.org/abs/2501.15383).
|
215 |
+
|
216 |
+
## Citation
|
217 |
+
|
218 |
+
If you find our work helpful, feel free to give us a cite.
|
219 |
+
|
220 |
+
```
|
221 |
+
@misc{qwen2.5-1m,
|
222 |
+
title = {Qwen2.5-1M: Deploy Your Own Qwen with Context Length up to 1M Tokens},
|
223 |
+
url = {https://qwenlm.github.io/blog/qwen2.5-1m/},
|
224 |
+
author = {Qwen Team},
|
225 |
+
month = {January},
|
226 |
+
year = {2025}
|
227 |
+
}
|
228 |
+
|
229 |
+
@article{qwen2.5,
|
230 |
+
title={Qwen2.5-1M Technical Report},
|
231 |
+
author={An Yang and Bowen Yu and Chengyuan Li and Dayiheng Liu and Fei Huang and Haoyan Huang and Jiandong Jiang and Jianhong Tu and Jianwei Zhang and Jingren Zhou and Junyang Lin and Kai Dang and Kexin Yang and Le Yu and Mei Li and Minmin Sun and Qin Zhu and Rui Men and Tao He and Weijia Xu and Wenbiao Yin and Wenyuan Yu and Xiafei Qiu and Xingzhang Ren and Xinlong Yang and Yong Li and Zhiying Xu and Zipeng Zhang},
|
232 |
+
journal={arXiv preprint arXiv:2501.15383},
|
233 |
+
year={2025}
|
234 |
+
}
|
235 |
+
```
|
config.json
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"Qwen2ForCausalLM"
|
4 |
+
],
|
5 |
+
"attention_dropout": 0.0,
|
6 |
+
"bos_token_id": 151643,
|
7 |
+
"eos_token_id": 151645,
|
8 |
+
"hidden_act": "silu",
|
9 |
+
"hidden_size": 3584,
|
10 |
+
"initializer_range": 0.02,
|
11 |
+
"intermediate_size": 18944,
|
12 |
+
"max_position_embeddings": 1010000,
|
13 |
+
"max_window_layers": 28,
|
14 |
+
"model_type": "qwen2",
|
15 |
+
"num_attention_heads": 28,
|
16 |
+
"num_hidden_layers": 28,
|
17 |
+
"num_key_value_heads": 4,
|
18 |
+
"rms_norm_eps": 1e-05,
|
19 |
+
"rope_scaling": null,
|
20 |
+
"rope_theta": 10000000.0,
|
21 |
+
"sliding_window": 32768,
|
22 |
+
"tie_word_embeddings": false,
|
23 |
+
"torch_dtype": "bfloat16",
|
24 |
+
"transformers_version": "4.47.1",
|
25 |
+
"use_cache": true,
|
26 |
+
"use_sliding_window": false,
|
27 |
+
"vocab_size": 152064,
|
28 |
+
"dual_chunk_attention_config": {
|
29 |
+
"chunk_size": 262144,
|
30 |
+
"local_size": 8192,
|
31 |
+
"original_max_position_embeddings": 262144
|
32 |
+
},
|
33 |
+
"quantization_config": {
|
34 |
+
"quant_method": "exl2",
|
35 |
+
"version": "0.2.7",
|
36 |
+
"bits": 5.0,
|
37 |
+
"head_bits": 8,
|
38 |
+
"calibration": {
|
39 |
+
"rows": 115,
|
40 |
+
"length": 2048,
|
41 |
+
"dataset": "(default)"
|
42 |
+
}
|
43 |
+
}
|
44 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 151643,
|
3 |
+
"pad_token_id": 151643,
|
4 |
+
"do_sample": true,
|
5 |
+
"eos_token_id": [
|
6 |
+
151645,
|
7 |
+
151643
|
8 |
+
],
|
9 |
+
"repetition_penalty": 1.05,
|
10 |
+
"temperature": 0.7,
|
11 |
+
"top_p": 0.8,
|
12 |
+
"top_k": 20,
|
13 |
+
"transformers_version": "4.37.0"
|
14 |
+
}
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,346 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 15231233024
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "model-00004-of-00004.safetensors",
|
7 |
+
"model.embed_tokens.weight": "model-00001-of-00004.safetensors",
|
8 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
9 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
10 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
11 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
12 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
13 |
+
"model.layers.0.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
14 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
15 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
16 |
+
"model.layers.0.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
17 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
18 |
+
"model.layers.0.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
19 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
20 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
21 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
22 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
23 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
24 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
25 |
+
"model.layers.1.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
26 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
27 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
28 |
+
"model.layers.1.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
29 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
30 |
+
"model.layers.1.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
31 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
32 |
+
"model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
33 |
+
"model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
34 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
35 |
+
"model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
36 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
37 |
+
"model.layers.10.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
38 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
39 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
40 |
+
"model.layers.10.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
41 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
42 |
+
"model.layers.10.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
43 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
44 |
+
"model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
45 |
+
"model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
46 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
47 |
+
"model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
48 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
49 |
+
"model.layers.11.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
50 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
51 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
52 |
+
"model.layers.11.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
53 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
54 |
+
"model.layers.11.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
55 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
56 |
+
"model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
57 |
+
"model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
58 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
59 |
+
"model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
60 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
61 |
+
"model.layers.12.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
62 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
63 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
64 |
+
"model.layers.12.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
65 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
66 |
+
"model.layers.12.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
67 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
68 |
+
"model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
69 |
+
"model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
70 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
71 |
+
"model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
72 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
73 |
+
"model.layers.13.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
74 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
75 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
76 |
+
"model.layers.13.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
77 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
78 |
+
"model.layers.13.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
79 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
80 |
+
"model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
81 |
+
"model.layers.14.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
82 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
83 |
+
"model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
84 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
85 |
+
"model.layers.14.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
86 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
87 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
88 |
+
"model.layers.14.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
89 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
90 |
+
"model.layers.14.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
91 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
92 |
+
"model.layers.15.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
93 |
+
"model.layers.15.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
94 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
95 |
+
"model.layers.15.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
96 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
97 |
+
"model.layers.15.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
98 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
99 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
100 |
+
"model.layers.15.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
101 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
102 |
+
"model.layers.15.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
103 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
104 |
+
"model.layers.16.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
105 |
+
"model.layers.16.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
106 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
107 |
+
"model.layers.16.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
108 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
109 |
+
"model.layers.16.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
110 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
111 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
112 |
+
"model.layers.16.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
113 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
114 |
+
"model.layers.16.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
115 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
116 |
+
"model.layers.17.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
117 |
+
"model.layers.17.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
118 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
119 |
+
"model.layers.17.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
120 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
121 |
+
"model.layers.17.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
122 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
123 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
124 |
+
"model.layers.17.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
125 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
126 |
+
"model.layers.17.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
127 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
128 |
+
"model.layers.18.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
129 |
+
"model.layers.18.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
130 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
131 |
+
"model.layers.18.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
132 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
133 |
+
"model.layers.18.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
134 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
135 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
136 |
+
"model.layers.18.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
137 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
138 |
+
"model.layers.18.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
139 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
140 |
+
"model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
141 |
+
"model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
142 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
143 |
+
"model.layers.19.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
144 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
145 |
+
"model.layers.19.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
146 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
147 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
148 |
+
"model.layers.19.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
149 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
150 |
+
"model.layers.19.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
151 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
152 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
153 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
154 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
155 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
156 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
157 |
+
"model.layers.2.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
158 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
159 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
160 |
+
"model.layers.2.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
161 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
162 |
+
"model.layers.2.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
163 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
164 |
+
"model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
165 |
+
"model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
166 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
167 |
+
"model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
168 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
169 |
+
"model.layers.20.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
170 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
171 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
172 |
+
"model.layers.20.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
173 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
174 |
+
"model.layers.20.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
175 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
176 |
+
"model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
177 |
+
"model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
178 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
179 |
+
"model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
180 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
181 |
+
"model.layers.21.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
182 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
183 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
184 |
+
"model.layers.21.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
185 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
186 |
+
"model.layers.21.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
187 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
188 |
+
"model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
189 |
+
"model.layers.22.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
190 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
191 |
+
"model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
192 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
193 |
+
"model.layers.22.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
194 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
195 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
196 |
+
"model.layers.22.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
197 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
198 |
+
"model.layers.22.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
199 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
200 |
+
"model.layers.23.input_layernorm.weight": "model-00004-of-00004.safetensors",
|
201 |
+
"model.layers.23.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
202 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
|
203 |
+
"model.layers.23.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
|
204 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
|
205 |
+
"model.layers.23.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
206 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
207 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
|
208 |
+
"model.layers.23.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
209 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
210 |
+
"model.layers.23.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
211 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
212 |
+
"model.layers.24.input_layernorm.weight": "model-00004-of-00004.safetensors",
|
213 |
+
"model.layers.24.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
214 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
|
215 |
+
"model.layers.24.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
|
216 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
|
217 |
+
"model.layers.24.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
218 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
219 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
|
220 |
+
"model.layers.24.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
221 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
222 |
+
"model.layers.24.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
223 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
224 |
+
"model.layers.25.input_layernorm.weight": "model-00004-of-00004.safetensors",
|
225 |
+
"model.layers.25.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
226 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
|
227 |
+
"model.layers.25.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
|
228 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
|
229 |
+
"model.layers.25.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
230 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
231 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
|
232 |
+
"model.layers.25.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
233 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
234 |
+
"model.layers.25.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
235 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
236 |
+
"model.layers.26.input_layernorm.weight": "model-00004-of-00004.safetensors",
|
237 |
+
"model.layers.26.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
238 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
|
239 |
+
"model.layers.26.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
|
240 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
|
241 |
+
"model.layers.26.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
242 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
243 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
|
244 |
+
"model.layers.26.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
245 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
246 |
+
"model.layers.26.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
247 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
248 |
+
"model.layers.27.input_layernorm.weight": "model-00004-of-00004.safetensors",
|
249 |
+
"model.layers.27.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
250 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
|
251 |
+
"model.layers.27.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
|
252 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
|
253 |
+
"model.layers.27.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
254 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
255 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
|
256 |
+
"model.layers.27.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
257 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
258 |
+
"model.layers.27.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
259 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
260 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
261 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
262 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
263 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
264 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
265 |
+
"model.layers.3.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
266 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
267 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
268 |
+
"model.layers.3.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
269 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
270 |
+
"model.layers.3.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
271 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
272 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
273 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
274 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
275 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
276 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
277 |
+
"model.layers.4.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
278 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
279 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
280 |
+
"model.layers.4.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
281 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
282 |
+
"model.layers.4.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
283 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
284 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
285 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
286 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
287 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
288 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
289 |
+
"model.layers.5.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
290 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
291 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
292 |
+
"model.layers.5.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
293 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
294 |
+
"model.layers.5.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
295 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
296 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
297 |
+
"model.layers.6.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
298 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
299 |
+
"model.layers.6.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
300 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
301 |
+
"model.layers.6.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
302 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
303 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
304 |
+
"model.layers.6.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
305 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
306 |
+
"model.layers.6.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
307 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
308 |
+
"model.layers.7.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
309 |
+
"model.layers.7.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
310 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
311 |
+
"model.layers.7.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
312 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
313 |
+
"model.layers.7.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
314 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
315 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
316 |
+
"model.layers.7.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
317 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
318 |
+
"model.layers.7.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
319 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
320 |
+
"model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
321 |
+
"model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
322 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
323 |
+
"model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
324 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
325 |
+
"model.layers.8.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
326 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
327 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
328 |
+
"model.layers.8.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
329 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
330 |
+
"model.layers.8.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
331 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
332 |
+
"model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
333 |
+
"model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
334 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
335 |
+
"model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
336 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
337 |
+
"model.layers.9.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
338 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
339 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
340 |
+
"model.layers.9.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
341 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
342 |
+
"model.layers.9.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
343 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
344 |
+
"model.norm.weight": "model-00004-of-00004.safetensors"
|
345 |
+
}
|
346 |
+
}
|
output.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7441a4433f35515fd3b616c4da2b4b4f8974999d4b34961075ec05ecab60b38a
|
3 |
+
size 5705539506
|
sparse_attention_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
[{"0": ["vertical_and_slash", 9192, 14288, 0.6920984983444214], "1": ["vertical_and_slash", 1000, 6096, 0.9862403869628906], "2": ["vertical_and_slash", 3048, 8144, 0.8198256492614746], "3": ["vertical_and_slash", 11340, 16336, 0.9518619179725647], "4": ["vertical_and_slash", 5096, 10192, 0.739506721496582], "5": ["vertical_and_slash", 1000, 6096, 0.9902973771095276], "6": ["vertical_and_slash", 30, 800, 0.9972315430641174], "7": ["vertical_and_slash", 1000, 6096, 0.9914392828941345], "8": ["vertical_and_slash", 1000, 6096, 0.950901210308075], "9": ["vertical_and_slash", 3048, 8144, 0.8771697878837585], "10": ["vertical_and_slash", 13388, 18384, 0.8314550518989563], "11": ["vertical_and_slash", 1000, 6096, 0.9330742359161377], "12": ["vertical_and_slash", 1000, 6096, 0.9362020492553711], "13": ["vertical_and_slash", 3048, 8144, 0.8856230974197388], "14": ["vertical_and_slash", 9192, 14288, 0.6533831357955933], "15": ["vertical_and_slash", 13388, 18384, 0.8002538084983826], "16": ["vertical_and_slash", 1000, 6096, 0.9781253933906555], "17": ["vertical_and_slash", 3048, 8144, 0.8541072010993958], "18": ["vertical_and_slash", 9192, 14288, 0.6799413561820984], "19": ["vertical_and_slash", 3048, 8144, 0.8869160413742065], "20": ["vertical_and_slash", 1000, 6096, 0.9579253196716309], "21": ["vertical_and_slash", 1000, 6096, 0.9464394450187683], "22": ["vertical_and_slash", 3048, 8144, 0.8140186071395874], "23": ["vertical_and_slash", 1000, 6096, 0.9577401876449585], "24": ["vertical_and_slash", 1000, 6096, 0.9639880061149597], "25": ["vertical_and_slash", 1000, 6096, 0.9603379368782043], "26": ["vertical_and_slash", 1000, 6096, 0.9592313170433044], "27": ["vertical_and_slash", 1000, 6096, 0.9610494375228882]}, {"0": ["vertical_and_slash", 1000, 6096, 0.9999175667762756], "1": ["vertical_and_slash", 11692, 8292, 0.5583158731460571], "2": ["vertical_and_slash", 11340, 16336, 0.9962033033370972], "3": ["vertical_and_slash", 1000, 6096, 0.9998870491981506], "4": ["vertical_and_slash", 1000, 6096, 0.9992745518684387], "5": ["vertical_and_slash", 1000, 6096, 0.9997513890266418], "6": ["vertical_and_slash", 13388, 18384, 0.8439157009124756], "7": ["vertical_and_slash", 1000, 6096, 0.9102388024330139], "8": ["vertical_and_slash", 3048, 8144, 0.8252120018005371], "9": ["vertical_and_slash", 9192, 14288, 0.5839092135429382], "10": ["vertical_and_slash", 1000, 6096, 0.9527733325958252], "11": ["vertical_and_slash", 1000, 6096, 0.9262151122093201], "12": ["vertical_and_slash", 1000, 6096, 0.9747101664543152], "13": ["vertical_and_slash", 9192, 14288, 0.693157434463501], "14": ["vertical_and_slash", 1000, 6096, 0.9503929615020752], "15": ["vertical_and_slash", 1000, 6096, 0.9907119870185852], "16": ["vertical_and_slash", 5096, 10192, 0.7641042470932007], "17": ["vertical_and_slash", 1000, 6096, 0.9974478483200073], "18": ["vertical_and_slash", 3048, 8144, 0.864757776260376], "19": ["vertical_and_slash", 1000, 6096, 0.9005423188209534], "20": ["vertical_and_slash", 1000, 6096, 0.934573769569397], "21": ["vertical_and_slash", 9192, 14288, 0.5810629725456238], "22": ["vertical_and_slash", 5096, 10192, 0.7144602537155151], "23": ["vertical_and_slash", 1000, 6096, 0.9564751386642456], "24": ["vertical_and_slash", 1000, 6096, 0.9916792511940002], "25": ["vertical_and_slash", 3048, 8144, 0.8495540618896484], "26": ["vertical_and_slash", 9192, 14288, 0.6452760696411133], "27": ["vertical_and_slash", 1000, 6096, 0.9232876300811768]}, {"0": ["vertical_and_slash", 9744, 6244, 0.9077025055885315], "1": ["vertical_and_slash", 5548, 2148, 0.8882887959480286], "2": ["vertical_and_slash", 3500, 100, 0.9153436422348022], "3": ["vertical_and_slash", 3500, 100, 0.9312531352043152], "4": ["vertical_and_slash", 9192, 14288, 0.6427125334739685], "5": ["vertical_and_slash", 3500, 100, 0.9152134656906128], "6": ["vertical_and_slash", 5548, 2148, 0.8578056693077087], "7": ["vertical_and_slash", 1000, 6096, 0.932381808757782], "8": ["vertical_and_slash", 3048, 8144, 0.8542991280555725], "9": ["vertical_and_slash", 1000, 6096, 0.9245713949203491], "10": ["vertical_and_slash", 3048, 8144, 0.8989690542221069], "11": ["vertical_and_slash", 1000, 6096, 0.9269236326217651], "12": ["vertical_and_slash", 5096, 10192, 0.7965206503868103], "13": ["vertical_and_slash", 5096, 10192, 0.7843445539474487], "14": ["vertical_and_slash", 9192, 14288, 0.5634094476699829], "15": ["vertical_and_slash", 5096, 10192, 0.7882068157196045], "16": ["vertical_and_slash", 5096, 10192, 0.7812356352806091], "17": ["vertical_and_slash", 9192, 14288, 0.6630747318267822], "18": ["vertical_and_slash", 11692, 8292, 0.695554792881012], "19": ["vertical_and_slash", 9192, 14288, 0.6496447920799255], "20": ["vertical_and_slash", 9192, 14288, 0.6239688992500305], "21": ["vertical_and_slash", 3048, 8144, 0.8381555676460266], "22": ["vertical_and_slash", 9192, 14288, 0.5935300588607788], "23": ["vertical_and_slash", 1000, 6096, 0.9077279567718506], "24": ["vertical_and_slash", 5096, 10192, 0.7705077528953552], "25": ["vertical_and_slash", 3048, 8144, 0.8881292343139648], "26": ["vertical_and_slash", 15436, 20432, 0.654614269733429], "27": ["vertical_and_slash", 1000, 6096, 0.9183178544044495]}, {"0": ["vertical_and_slash", 9192, 14288, 0.6299600005149841], "1": ["vertical_and_slash", 1000, 6096, 0.9939385652542114], "2": ["vertical_and_slash", 1000, 6096, 0.9255406856536865], "3": ["vertical_and_slash", 1000, 6096, 0.9815036058425903], "4": ["vertical_and_slash", 1000, 6096, 0.9068899154663086], "5": ["vertical_and_slash", 1000, 6096, 0.9562771916389465], "6": ["vertical_and_slash", 1000, 6096, 0.9499258399009705], "7": ["vertical_and_slash", 1000, 6096, 0.9981131553649902], "8": ["vertical_and_slash", 9192, 14288, 0.47260501980781555], "9": ["vertical_and_slash", 1000, 6096, 0.9922735691070557], "10": ["vertical_and_slash", 1000, 6096, 0.9986152052879333], "11": ["vertical_and_slash", 1000, 6096, 0.9634198546409607], "12": ["vertical_and_slash", 1000, 6096, 0.9510660171508789], "13": ["vertical_and_slash", 1000, 6096, 0.9214046597480774], "14": ["vertical_and_slash", 5096, 10192, 0.7424683570861816], "15": ["vertical_and_slash", 1000, 6096, 0.9193776845932007], "16": ["vertical_and_slash", 11692, 8292, 0.6805881261825562], "17": ["vertical_and_slash", 5096, 10192, 0.7827474474906921], "18": ["vertical_and_slash", 9192, 14288, 0.6499208211898804], "19": ["vertical_and_slash", 3048, 8144, 0.8205469846725464], "20": ["vertical_and_slash", 1000, 6096, 0.9113396406173706], "21": ["vertical_and_slash", 3048, 8144, 0.8239019513130188], "22": ["vertical_and_slash", 1000, 6096, 0.953626275062561], "23": ["vertical_and_slash", 3048, 8144, 0.8758710622787476], "24": ["vertical_and_slash", 1000, 6096, 0.9802020788192749], "25": ["vertical_and_slash", 1000, 6096, 0.9784566760063171], "26": ["vertical_and_slash", 1000, 6096, 0.9459996819496155], "27": ["vertical_and_slash", 1000, 6096, 0.9493811726570129]}, {"0": ["vertical_and_slash", 3048, 8144, 0.8282588720321655], "1": ["vertical_and_slash", 3048, 8144, 0.8945374488830566], "2": ["vertical_and_slash", 1000, 6096, 0.9859223961830139], "3": ["vertical_and_slash", 1000, 6096, 0.9584572911262512], "4": ["vertical_and_slash", 1000, 6096, 0.9155289530754089], "5": ["vertical_and_slash", 1000, 6096, 0.9548629522323608], "6": ["vertical_and_slash", 3048, 8144, 0.8657681345939636], "7": ["vertical_and_slash", 1000, 6096, 0.9909697771072388], "8": ["vertical_and_slash", 3048, 8144, 0.8176682591438293], "9": ["vertical_and_slash", 1000, 6096, 0.9185464978218079], "10": ["vertical_and_slash", 3048, 8144, 0.8876745104789734], "11": ["vertical_and_slash", 1000, 6096, 0.9989773631095886], "12": ["vertical_and_slash", 100, 800, 1.0], "13": ["vertical_and_slash", 13840, 10340, 0.9865253567695618], "14": ["vertical_and_slash", 30, 800, 0.9833630919456482], "15": ["vertical_and_slash", 100, 800, 0.9375], "16": ["vertical_and_slash", 1000, 6096, 0.9603279829025269], "17": ["vertical_and_slash", 9192, 14288, 0.5568011403083801], "18": ["vertical_and_slash", 30, 800, 0.9944095611572266], "19": ["vertical_and_slash", 100, 800, 0.98828125], "20": ["vertical_and_slash", 30, 800, 0.9845749139785767], "21": ["vertical_and_slash", 1000, 6096, 0.9226506948471069], "22": ["vertical_and_slash", 30, 800, 0.9778012633323669], "23": ["vertical_and_slash", 30, 800, 0.9957334399223328], "24": ["vertical_and_slash", 5096, 10192, 0.7061529159545898], "25": ["vertical_and_slash", 30, 800, 0.9853928685188293], "26": ["vertical_and_slash", 3048, 8144, 0.8172721862792969], "27": ["vertical_and_slash", 30, 800, 0.9829623103141785]}, {"0": ["vertical_and_slash", 1000, 6096, 0.9093767404556274], "1": ["vertical_and_slash", 30, 800, 0.9735046625137329], "2": ["vertical_and_slash", 1000, 6096, 0.9702109098434448], "3": ["vertical_and_slash", 30, 800, 0.9810881614685059], "4": ["vertical_and_slash", 1000, 6096, 0.956884503364563], "5": ["vertical_and_slash", 15436, 20432, 0.5826653242111206], "6": ["vertical_and_slash", 9192, 14288, 0.6588539481163025], "7": ["vertical_and_slash", 1000, 6096, 0.9873548150062561], "8": ["vertical_and_slash", 1000, 6096, 0.9430211186408997], "9": ["vertical_and_slash", 5096, 10192, 0.7686501145362854], "10": ["vertical_and_slash", 1000, 6096, 0.9063356518745422], "11": ["vertical_and_slash", 9192, 14288, 0.6081218123435974], "12": ["vertical_and_slash", 1000, 6096, 0.9467446208000183], "13": ["vertical_and_slash", 3048, 8144, 0.8317232728004456], "14": ["vertical_and_slash", 1000, 6096, 0.9639446139335632], "15": ["vertical_and_slash", 3048, 8144, 0.8432199358940125], "16": ["vertical_and_slash", 1000, 6096, 0.9603729844093323], "17": ["vertical_and_slash", 9192, 14288, 0.5282297134399414], "18": ["vertical_and_slash", 9192, 14288, 0.5313483476638794], "19": ["vertical_and_slash", 19532, 24528, 0.6716174483299255], "20": ["vertical_and_slash", 9192, 14288, 0.5943314433097839], "21": ["vertical_and_slash", 9192, 14288, 0.5765253901481628], "22": ["vertical_and_slash", 30, 800, 0.9723267555236816], "23": ["vertical_and_slash", 30, 800, 0.9864580631256104], "24": ["vertical_and_slash", 100, 800, 0.9375], "25": ["vertical_and_slash", 30, 800, 0.9841305613517761], "26": ["vertical_and_slash", 100, 800, 0.9375], "27": ["vertical_and_slash", 100, 800, 0.94140625]}, {"0": ["vertical_and_slash", 30, 800, 0.9887828826904297], "1": ["vertical_and_slash", 30, 800, 0.991061270236969], "2": ["vertical_and_slash", 30, 800, 0.9967905282974243], "3": ["vertical_and_slash", 30, 800, 0.9886236786842346], "4": ["vertical_and_slash", 30, 800, 0.995130717754364], "5": ["vertical_and_slash", 30, 800, 0.980113685131073], "6": ["vertical_and_slash", 30, 800, 0.9969208836555481], "7": ["vertical_and_slash", 1000, 6096, 0.960637092590332], "8": ["vertical_and_slash", 1000, 6096, 0.9405831694602966], "9": ["vertical_and_slash", 1000, 6096, 0.9176963567733765], "10": ["vertical_and_slash", 3048, 8144, 0.819543182849884], "11": ["vertical_and_slash", 3048, 8144, 0.849609911441803], "12": ["vertical_and_slash", 1000, 6096, 0.9364283084869385], "13": ["vertical_and_slash", 3500, 100, 0.9509801864624023], "14": ["vertical_and_slash", 30, 800, 0.9800994396209717], "15": ["vertical_and_slash", 30, 800, 0.9964476227760315], "16": ["vertical_and_slash", 30, 800, 0.9962098598480225], "17": ["vertical_and_slash", 3048, 8144, 0.8155508637428284], "18": ["vertical_and_slash", 5096, 10192, 0.969977855682373], "19": ["vertical_and_slash", 30, 800, 0.9929144978523254], "20": ["vertical_and_slash", 30, 800, 0.9956931471824646], "21": ["vertical_and_slash", 30, 800, 0.9900340437889099], "22": ["vertical_and_slash", 30, 800, 0.9817578196525574], "23": ["vertical_and_slash", 5096, 10192, 0.7279469966888428], "24": ["vertical_and_slash", 30, 800, 0.977938711643219], "25": ["vertical_and_slash", 30, 800, 0.9940697550773621], "26": ["vertical_and_slash", 30, 800, 0.9888582825660706], "27": ["vertical_and_slash", 30, 800, 0.9776446223258972]}, {"0": ["vertical_and_slash", 6274, 6944, 0.9849215745925903], "1": ["vertical_and_slash", 100, 800, 0.91796875], "2": ["vertical_and_slash", 3048, 8144, 0.8702616691589355], "3": ["vertical_and_slash", 1000, 6096, 0.9742972254753113], "4": ["vertical_and_slash", 30, 800, 0.9930776953697205], "5": ["vertical_and_slash", 30, 800, 0.9923169016838074], "6": ["vertical_and_slash", 11340, 16336, 0.7224187850952148], "7": ["vertical_and_slash", 1000, 6096, 0.9252712726593018], "8": ["vertical_and_slash", 1000, 6096, 0.987740695476532], "9": ["vertical_and_slash", 1000, 6096, 0.9918652176856995], "10": ["vertical_and_slash", 3048, 8144, 0.8553299307823181], "11": ["vertical_and_slash", 30, 800, 0.9839231967926025], "12": ["vertical_and_slash", 1000, 6096, 0.9922063946723938], "13": ["vertical_and_slash", 30, 800, 0.9844004511833191], "14": ["vertical_and_slash", 7244, 12240, 0.9108995199203491], "15": ["vertical_and_slash", 5096, 10192, 0.7733249068260193], "16": ["vertical_and_slash", 100, 800, 0.9921875], "17": ["vertical_and_slash", 1000, 6096, 0.9894708395004272], "18": ["vertical_and_slash", 6344, 6944, 0.96484375], "19": ["vertical_and_slash", 5096, 10192, 0.7390482425689697], "20": ["vertical_and_slash", 30, 800, 0.9494436979293823], "21": ["vertical_and_slash", 1000, 6096, 0.9951373934745789], "22": ["vertical_and_slash", 1000, 6096, 0.9152458906173706], "23": ["vertical_and_slash", 1000, 6096, 0.9692571759223938], "24": ["vertical_and_slash", 1000, 6096, 0.9701493978500366], "25": ["vertical_and_slash", 1000, 6096, 0.983892023563385], "26": ["vertical_and_slash", 3048, 8144, 0.8999871611595154], "27": ["vertical_and_slash", 1000, 6096, 0.9546129703521729]}, {"0": ["vertical_and_slash", 1000, 6096, 0.9800829291343689], "1": ["vertical_and_slash", 1000, 6096, 0.9934086799621582], "2": ["vertical_and_slash", 1000, 6096, 0.9579113721847534], "3": ["vertical_and_slash", 1000, 6096, 0.910209059715271], "4": ["vertical_and_slash", 3048, 8144, 0.8276802897453308], "5": ["vertical_and_slash", 1000, 6096, 0.9891079068183899], "6": ["vertical_and_slash", 1000, 6096, 0.9916367530822754], "7": ["vertical_and_slash", 1000, 6096, 0.9807681441307068], "8": ["vertical_and_slash", 1000, 6096, 0.996056318283081], "9": ["vertical_and_slash", 1000, 6096, 0.9689919948577881], "10": ["vertical_and_slash", 1000, 6096, 0.9973182678222656], "11": ["vertical_and_slash", 1000, 6096, 0.9486907720565796], "12": ["vertical_and_slash", 1000, 6096, 0.9872133135795593], "13": ["vertical_and_slash", 1000, 6096, 0.9248751997947693], "14": ["vertical_and_slash", 500, 700, 0.9737105965614319], "15": ["vertical_and_slash", 30, 800, 0.9953463673591614], "16": ["vertical_and_slash", 500, 700, 0.996398389339447], "17": ["vertical_and_slash", 7596, 4196, 0.9452576041221619], "18": ["vertical_and_slash", 500, 700, 0.9803798794746399], "19": ["vertical_and_slash", 30, 800, 0.9829242825508118], "20": ["vertical_and_slash", 30, 800, 0.9800650477409363], "21": ["vertical_and_slash", 1000, 6096, 0.9978428483009338], "22": ["vertical_and_slash", 15436, 20432, 0.6166174411773682], "23": ["vertical_and_slash", 13388, 18384, 0.8101190328598022], "24": ["vertical_and_slash", 1000, 6096, 0.9721275568008423], "25": ["vertical_and_slash", 7244, 12240, 0.9621387720108032], "26": ["vertical_and_slash", 5096, 10192, 0.761796236038208], "27": ["vertical_and_slash", 15436, 20432, 0.735977292060852]}, {"0": ["vertical_and_slash", 1000, 6096, 0.9662788510322571], "1": ["vertical_and_slash", 1000, 6096, 0.933112621307373], "2": ["vertical_and_slash", 3048, 8144, 0.845474123954773], "3": ["vertical_and_slash", 11340, 16336, 0.9396570324897766], "4": ["vertical_and_slash", 5548, 2148, 0.8758905529975891], "5": ["vertical_and_slash", 1000, 6096, 0.9595933556556702], "6": ["vertical_and_slash", 1000, 6096, 0.9791407585144043], "7": ["vertical_and_slash", 1000, 6096, 0.9448844194412231], "8": ["vertical_and_slash", 15436, 20432, 0.7103061079978943], "9": ["vertical_and_slash", 1000, 6096, 0.985871434211731], "10": ["vertical_and_slash", 7596, 4196, 0.7926585078239441], "11": ["vertical_and_slash", 5096, 10192, 0.9791630506515503], "12": ["vertical_and_slash", 1000, 6096, 0.9933391809463501], "13": ["vertical_and_slash", 11340, 16336, 0.9010775089263916], "14": ["vertical_and_slash", 1000, 6096, 0.9843372702598572], "15": ["vertical_and_slash", 3048, 8144, 0.8298346996307373], "16": ["vertical_and_slash", 1000, 6096, 0.9661977887153625], "17": ["vertical_and_slash", 1000, 6096, 0.90715092420578], "18": ["vertical_and_slash", 1000, 6096, 0.9170965552330017], "19": ["vertical_and_slash", 9192, 14288, 0.6205919981002808], "20": ["vertical_and_slash", 1000, 6096, 0.9696729779243469], "21": ["vertical_and_slash", 1000, 6096, 0.9067583084106445], "22": ["vertical_and_slash", 7596, 4196, 0.7575717568397522], "23": ["vertical_and_slash", 7244, 12240, 0.9475517868995667], "24": ["vertical_and_slash", 1000, 6096, 0.966336727142334], "25": ["vertical_and_slash", 5548, 2148, 0.8904582262039185], "26": ["vertical_and_slash", 1000, 6096, 0.9011759757995605], "27": ["vertical_and_slash", 1000, 6096, 0.9367696046829224]}, {"0": ["vertical_and_slash", 1000, 6096, 0.9443923234939575], "1": ["vertical_and_slash", 7244, 12240, 0.9806238412857056], "2": ["vertical_and_slash", 13840, 10340, 0.957985520362854], "3": ["vertical_and_slash", 11340, 16336, 0.9818342924118042], "4": ["vertical_and_slash", 500, 700, 0.9885478019714355], "5": ["vertical_and_slash", 1000, 6096, 0.9833213090896606], "6": ["vertical_and_slash", 7596, 4196, 0.7089235782623291], "7": ["vertical_and_slash", 1000, 6096, 0.9972561597824097], "8": ["vertical_and_slash", 1000, 6096, 0.995736837387085], "9": ["vertical_and_slash", 1000, 6096, 0.9955088496208191], "10": ["vertical_and_slash", 1000, 6096, 0.9935648441314697], "11": ["vertical_and_slash", 1000, 6096, 0.9156711101531982], "12": ["vertical_and_slash", 1000, 6096, 0.9951316118240356], "13": ["vertical_and_slash", 1000, 6096, 0.9924508929252625], "14": ["vertical_and_slash", 1000, 6096, 0.9403036832809448], "15": ["vertical_and_slash", 30, 800, 0.9910191297531128], "16": ["vertical_and_slash", 500, 700, 0.9839996099472046], "17": ["vertical_and_slash", 3500, 100, 0.9900570511817932], "18": ["vertical_and_slash", 1000, 6096, 0.901885449886322], "19": ["vertical_and_slash", 1000, 6096, 0.9504903554916382], "20": ["vertical_and_slash", 1000, 6096, 0.9650601744651794], "21": ["vertical_and_slash", 10840, 10940, 0.990660548210144], "22": ["vertical_and_slash", 30, 800, 0.9931259155273438], "23": ["vertical_and_slash", 6274, 6944, 0.9908908605575562], "24": ["vertical_and_slash", 1000, 6096, 0.9198976755142212], "25": ["vertical_and_slash", 30, 800, 0.9933606386184692], "26": ["vertical_and_slash", 6274, 6944, 0.9890289306640625], "27": ["vertical_and_slash", 30, 800, 0.9929149746894836]}, {"0": ["vertical_and_slash", 3048, 8144, 0.8870794177055359], "1": ["vertical_and_slash", 30, 800, 0.9871358275413513], "2": ["vertical_and_slash", 1000, 6096, 0.9092150330543518], "3": ["vertical_and_slash", 1000, 6096, 0.9849765300750732], "4": ["vertical_and_slash", 500, 700, 0.9693071246147156], "5": ["vertical_and_slash", 30, 800, 0.9693368673324585], "6": ["vertical_and_slash", 1000, 6096, 0.9419503211975098], "7": ["vertical_and_slash", 30, 800, 0.9812013506889343], "8": ["vertical_and_slash", 15436, 20432, 0.6496729254722595], "9": ["vertical_and_slash", 100, 800, 0.94140625], "10": ["vertical_and_slash", 1000, 6096, 0.9741862416267395], "11": ["vertical_and_slash", 4196, 4896, 0.95703125], "12": ["vertical_and_slash", 15788, 12388, 0.46300187706947327], "13": ["vertical_and_slash", 10440, 11040, 0.96875], "14": ["vertical_and_slash", 30, 800, 0.9830393195152283], "15": ["vertical_and_slash", 30, 800, 0.9927415251731873], "16": ["vertical_and_slash", 1000, 6096, 0.9534035325050354], "17": ["vertical_and_slash", 100, 800, 0.984375], "18": ["vertical_and_slash", 30, 800, 0.9904463291168213], "19": ["vertical_and_slash", 6274, 6944, 0.9873848557472229], "20": ["vertical_and_slash", 6274, 6944, 0.991168737411499], "21": ["vertical_and_slash", 7244, 12240, 0.9426537752151489], "22": ["vertical_and_slash", 3048, 8144, 0.8975484371185303], "23": ["vertical_and_slash", 5096, 10192, 0.7350636124610901], "24": ["vertical_and_slash", 11340, 16336, 0.9229165315628052], "25": ["vertical_and_slash", 1000, 6096, 0.9412928223609924], "26": ["vertical_and_slash", 5096, 10192, 0.9706910252571106], "27": ["vertical_and_slash", 5096, 10192, 0.9476442933082581]}, {"0": ["vertical_and_slash", 1000, 6096, 0.9863660931587219], "1": ["vertical_and_slash", 4196, 4896, 0.95703125], "2": ["vertical_and_slash", 5548, 2148, 0.8480055332183838], "3": ["vertical_and_slash", 500, 700, 0.9538192749023438], "4": ["vertical_and_slash", 4196, 4896, 0.953125], "5": ["vertical_and_slash", 6344, 6944, 0.98046875], "6": ["vertical_and_slash", 5096, 10192, 0.7229321599006653], "7": ["vertical_and_slash", 17936, 14436, 0.7735021114349365], "8": ["vertical_and_slash", 1000, 6096, 0.9491978883743286], "9": ["vertical_and_slash", 1000, 6096, 0.9595749974250793], "10": ["vertical_and_slash", 1000, 6096, 0.942698061466217], "11": ["vertical_and_slash", 1000, 6096, 0.9691566228866577], "12": ["vertical_and_slash", 3048, 8144, 0.8794195055961609], "13": ["vertical_and_slash", 1000, 6096, 0.9725112915039062], "14": ["vertical_and_slash", 1000, 6096, 0.9814248085021973], "15": ["vertical_and_slash", 3048, 8144, 0.8134639859199524], "16": ["vertical_and_slash", 5096, 10192, 0.7067453265190125], "17": ["vertical_and_slash", 9192, 14288, 0.5412349700927734], "18": ["vertical_and_slash", 1000, 6096, 0.9959503412246704], "19": ["vertical_and_slash", 1000, 6096, 0.9272978901863098], "20": ["vertical_and_slash", 11340, 16336, 0.934908926486969], "21": ["vertical_and_slash", 1000, 6096, 0.9556578397750854], "22": ["vertical_and_slash", 1000, 6096, 0.9684078097343445], "23": ["vertical_and_slash", 1000, 6096, 0.9632892608642578], "24": ["vertical_and_slash", 13388, 18384, 0.8790978789329529], "25": ["vertical_and_slash", 1000, 6096, 0.9878668785095215], "26": ["vertical_and_slash", 1000, 6096, 0.9301976561546326], "27": ["vertical_and_slash", 1000, 6096, 0.9775260090827942]}, {"0": ["vertical_and_slash", 1000, 6096, 0.9639821648597717], "1": ["vertical_and_slash", 1000, 6096, 0.9714324474334717], "2": ["vertical_and_slash", 1000, 6096, 0.9500700235366821], "3": ["vertical_and_slash", 1000, 6096, 0.9642037153244019], "4": ["vertical_and_slash", 1000, 6096, 0.94118332862854], "5": ["vertical_and_slash", 1000, 6096, 0.9665160179138184], "6": ["vertical_and_slash", 5548, 2148, 0.8518802523612976], "7": ["vertical_and_slash", 1000, 6096, 0.9963601231575012], "8": ["vertical_and_slash", 30, 800, 0.9910691380500793], "9": ["vertical_and_slash", 100, 800, 0.9765625], "10": ["vertical_and_slash", 30, 800, 0.9925505518913269], "11": ["vertical_and_slash", 9192, 14288, 0.6851534247398376], "12": ["vertical_and_slash", 1000, 6096, 0.9318822622299194], "13": ["vertical_and_slash", 30, 800, 0.9992240071296692], "14": ["vertical_and_slash", 7244, 12240, 0.9547796845436096], "15": ["vertical_and_slash", 1000, 6096, 0.9696962237358093], "16": ["vertical_and_slash", 1000, 6096, 0.9316620826721191], "17": ["vertical_and_slash", 1000, 6096, 0.9258195161819458], "18": ["vertical_and_slash", 3048, 8144, 0.8255325555801392], "19": ["vertical_and_slash", 3048, 8144, 0.8840956687927246], "20": ["vertical_and_slash", 1000, 6096, 0.9662702083587646], "21": ["vertical_and_slash", 1000, 6096, 0.9504241943359375], "22": ["vertical_and_slash", 1000, 6096, 0.9732783436775208], "23": ["vertical_and_slash", 1000, 6096, 0.9553895592689514], "24": ["vertical_and_slash", 1000, 6096, 0.9737565517425537], "25": ["vertical_and_slash", 1000, 6096, 0.9609088897705078], "26": ["vertical_and_slash", 1000, 6096, 0.9755902886390686], "27": ["vertical_and_slash", 1000, 6096, 0.9681479930877686]}, {"0": ["vertical_and_slash", 19532, 24528, 0.6649974584579468], "1": ["vertical_and_slash", 5096, 10192, 0.7836548686027527], "2": ["vertical_and_slash", 11340, 16336, 0.937842607498169], "3": ["vertical_and_slash", 9192, 14288, 0.47755563259124756], "4": ["vertical_and_slash", 11340, 16336, 0.9645791053771973], "5": ["vertical_and_slash", 11340, 16336, 1.0000194311141968], "6": ["vertical_and_slash", 13388, 18384, 0.8536562919616699], "7": ["vertical_and_slash", 13840, 10340, 0.9791404604911804], "8": ["vertical_and_slash", 22032, 18532, 0.680722177028656], "9": ["vertical_and_slash", 3048, 8144, 0.8969497084617615], "10": ["vertical_and_slash", 3048, 8144, 0.8135265707969666], "11": ["vertical_and_slash", 11340, 16336, 0.9405107498168945], "12": ["vertical_and_slash", 9192, 14288, 0.6148377656936646], "13": ["vertical_and_slash", 8392, 8992, 0.87890625], "14": ["vertical_and_slash", 7244, 12240, 0.9699380993843079], "15": ["vertical_and_slash", 7244, 12240, 0.9827472567558289], "16": ["vertical_and_slash", 1000, 6096, 0.9853057861328125], "17": ["vertical_and_slash", 1000, 6096, 0.9891751408576965], "18": ["vertical_and_slash", 1000, 6096, 0.9121230244636536], "19": ["vertical_and_slash", 7244, 12240, 0.935899555683136], "20": ["vertical_and_slash", 3048, 8144, 0.8554543852806091], "21": ["vertical_and_slash", 3048, 8144, 0.8143891096115112], "22": ["vertical_and_slash", 5096, 10192, 0.7405089139938354], "23": ["vertical_and_slash", 9292, 14288, 0.8643857836723328], "24": ["vertical_and_slash", 1000, 6096, 0.916479229927063], "25": ["vertical_and_slash", 1000, 6096, 0.9841439127922058], "26": ["vertical_and_slash", 1000, 6096, 0.9474544525146484], "27": ["vertical_and_slash", 7144, 12240, 0.8183215260505676]}, {"0": ["vertical_and_slash", 1000, 6096, 0.9937507510185242], "1": ["vertical_and_slash", 9292, 14288, 0.8320319652557373], "2": ["vertical_and_slash", 1000, 6096, 0.9843978881835938], "3": ["vertical_and_slash", 1000, 6096, 0.99434894323349], "4": ["vertical_and_slash", 3048, 8144, 0.8445190787315369], "5": ["vertical_and_slash", 1000, 6096, 0.9977291226387024], "6": ["vertical_and_slash", 1000, 6096, 0.9971616864204407], "7": ["vertical_and_slash", 6344, 6944, 0.92578125], "8": ["vertical_and_slash", 30, 800, 0.9918319582939148], "9": ["vertical_and_slash", 30, 800, 0.9931505918502808], "10": ["vertical_and_slash", 500, 700, 0.9629374146461487], "11": ["vertical_and_slash", 30, 800, 0.9984971880912781], "12": ["vertical_and_slash", 500, 700, 0.9874173402786255], "13": ["vertical_and_slash", 30, 800, 0.9872177839279175], "14": ["vertical_and_slash", 8292, 8992, 0.6796875], "15": ["vertical_and_slash", 7244, 12240, 0.9822348356246948], "16": ["vertical_and_slash", 4196, 4896, 0.984375], "17": ["vertical_and_slash", 1000, 6096, 0.9580352902412415], "18": ["vertical_and_slash", 13388, 18384, 0.8853479027748108], "19": ["vertical_and_slash", 6344, 6944, 0.953125], "20": ["vertical_and_slash", 13388, 18384, 0.8276364803314209], "21": ["vertical_and_slash", 500, 700, 0.9783065915107727], "22": ["vertical_and_slash", 1000, 6096, 0.9267724752426147], "23": ["vertical_and_slash", 3048, 8144, 0.8524566888809204], "24": ["vertical_and_slash", 9192, 14288, 0.663494348526001], "25": ["vertical_and_slash", 3048, 8144, 0.8196530342102051], "26": ["vertical_and_slash", 3048, 8144, 0.8980101346969604], "27": ["vertical_and_slash", 4596, 4796, 0.9499697089195251]}, {"0": ["vertical_and_slash", 11340, 16336, 0.9402349591255188], "1": ["vertical_and_slash", 10440, 11040, 0.9453125], "2": ["vertical_and_slash", 3048, 8144, 0.8996480703353882], "3": ["vertical_and_slash", 1000, 6096, 0.9078497886657715], "4": ["vertical_and_slash", 11340, 16336, 0.958014965057373], "5": ["vertical_and_slash", 5096, 10192, 0.796527087688446], "6": ["vertical_and_slash", 7244, 12240, 0.9736052751541138], "7": ["vertical_and_slash", 11340, 16336, 0.9348691701889038], "8": ["vertical_and_slash", 1000, 6096, 0.9979962706565857], "9": ["vertical_and_slash", 15436, 20432, 0.7974388003349304], "10": ["vertical_and_slash", 1000, 6096, 0.9191967248916626], "11": ["vertical_and_slash", 5096, 10192, 0.7944039702415466], "12": ["vertical_and_slash", 11340, 16336, 0.7239288091659546], "13": ["vertical_and_slash", 15436, 20432, 0.6403535008430481], "14": ["vertical_and_slash", 13388, 18384, 0.8503284454345703], "15": ["vertical_and_slash", 9292, 14288, 0.8853875994682312], "16": ["vertical_and_slash", 11340, 16336, 0.9519768953323364], "17": ["vertical_and_slash", 13840, 10340, 0.9313420653343201], "18": ["vertical_and_slash", 7244, 12240, 0.9588450789451599], "19": ["vertical_and_slash", 5096, 10192, 0.7538775205612183], "20": ["vertical_and_slash", 17936, 14436, 0.7871273756027222], "21": ["vertical_and_slash", 4596, 4796, 0.983285665512085], "22": ["vertical_and_slash", 7244, 12240, 0.9609666466712952], "23": ["vertical_and_slash", 1000, 6096, 0.974759042263031], "24": ["vertical_and_slash", 1000, 6096, 0.9698718190193176], "25": ["vertical_and_slash", 1000, 6096, 0.9898294806480408], "26": ["vertical_and_slash", 1000, 6096, 0.9256659150123596], "27": ["vertical_and_slash", 7244, 12240, 0.9485111832618713]}, {"0": ["vertical_and_slash", 9292, 14288, 0.8835593461990356], "1": ["vertical_and_slash", 100, 800, 0.98046875], "2": ["vertical_and_slash", 1000, 6096, 0.9635430574417114], "3": ["vertical_and_slash", 1000, 6096, 0.9747232794761658], "4": ["vertical_and_slash", 1000, 6096, 0.9661608934402466], "5": ["vertical_and_slash", 6344, 6944, 0.953125], "6": ["vertical_and_slash", 1000, 6096, 0.9636247754096985], "7": ["vertical_and_slash", 13388, 18384, 0.8315137028694153], "8": ["vertical_and_slash", 13388, 18384, 0.8079983592033386], "9": ["vertical_and_slash", 3048, 8144, 0.8652046322822571], "10": ["vertical_and_slash", 5096, 10192, 0.7678346633911133], "11": ["vertical_and_slash", 4196, 4896, 0.9921875], "12": ["vertical_and_slash", 1000, 6096, 0.9621175527572632], "13": ["vertical_and_slash", 1000, 6096, 0.9095380902290344], "14": ["vertical_and_slash", 15888, 12388, 0.8682130575180054], "15": ["vertical_and_slash", 5096, 10192, 0.7981836199760437], "16": ["vertical_and_slash", 4196, 4896, 0.94921875], "17": ["vertical_and_slash", 3048, 8144, 0.8423125743865967], "18": ["vertical_and_slash", 11340, 16336, 0.9536053538322449], "19": ["vertical_and_slash", 19532, 24528, 0.6965113878250122], "20": ["vertical_and_slash", 11340, 16336, 0.765586256980896], "21": ["vertical_and_slash", 1000, 6096, 0.9789958000183105], "22": ["vertical_and_slash", 1000, 6096, 0.941737174987793], "23": ["vertical_and_slash", 1000, 6096, 0.9770992398262024], "24": ["vertical_and_slash", 13388, 18384, 0.8724013566970825], "25": ["vertical_and_slash", 1000, 6096, 0.9776409268379211], "26": ["vertical_and_slash", 3048, 8144, 0.8984430432319641], "27": ["vertical_and_slash", 1000, 6096, 0.9618942141532898]}, {"0": ["vertical_and_slash", 30, 800, 0.9397658705711365], "1": ["vertical_and_slash", 1000, 6096, 0.9678259491920471], "2": ["vertical_and_slash", 500, 700, 0.9607874751091003], "3": ["vertical_and_slash", 30, 800, 0.9745917320251465], "4": ["vertical_and_slash", 30, 800, 0.9659082889556885], "5": ["vertical_and_slash", 6274, 6944, 0.947303056716919], "6": ["vertical_and_slash", 30, 800, 0.9196206331253052], "7": ["vertical_and_slash", 30, 800, 1.000028133392334], "8": ["vertical_and_slash", 100, 800, 0.96484375], "9": ["vertical_and_slash", 500, 700, 0.9743742346763611], "10": ["vertical_and_slash", 11340, 16336, 0.7517896294593811], "11": ["vertical_and_slash", 1000, 6096, 0.9228399991989136], "12": ["vertical_and_slash", 1000, 6096, 0.9122115969657898], "13": ["vertical_and_slash", 4196, 4896, 0.96875], "14": ["vertical_and_slash", 1000, 6096, 0.9384160041809082], "15": ["vertical_and_slash", 1000, 6096, 0.955692708492279], "16": ["vertical_and_slash", 15436, 20432, 0.7190804481506348], "17": ["vertical_and_slash", 500, 700, 0.9635783433914185], "18": ["vertical_and_slash", 1000, 6096, 0.9114483594894409], "19": ["vertical_and_slash", 3048, 8144, 0.8773453831672668], "20": ["vertical_and_slash", 1000, 6096, 0.9607734084129333], "21": ["vertical_and_slash", 500, 700, 0.9821328520774841], "22": ["vertical_and_slash", 7244, 12240, 0.9674672484397888], "23": ["vertical_and_slash", 5096, 10192, 0.7276496887207031], "24": ["vertical_and_slash", 1000, 6096, 0.97364741563797], "25": ["vertical_and_slash", 1000, 6096, 0.9671147465705872], "26": ["vertical_and_slash", 1000, 6096, 0.9272445440292358], "27": ["vertical_and_slash", 4196, 4896, 0.96875]}, {"0": ["vertical_and_slash", 4126, 4896, 1.0000450611114502], "1": ["vertical_and_slash", 3048, 8144, 0.8740337491035461], "2": ["vertical_and_slash", 9744, 6244, 0.9127500057220459], "3": ["vertical_and_slash", 1000, 6096, 0.9917009472846985], "4": ["vertical_and_slash", 3048, 8144, 0.8467518091201782], "5": ["vertical_and_slash", 5096, 10192, 0.9295762181282043], "6": ["vertical_and_slash", 13388, 18384, 0.8826475143432617], "7": ["vertical_and_slash", 30, 800, 0.9837709069252014], "8": ["vertical_and_slash", 30, 800, 0.9920428991317749], "9": ["vertical_and_slash", 30, 800, 0.9717660546302795], "10": ["vertical_and_slash", 6274, 6944, 0.9047616124153137], "11": ["vertical_and_slash", 5096, 10192, 0.7814681529998779], "12": ["vertical_and_slash", 500, 700, 0.9585937857627869], "13": ["vertical_and_slash", 30, 800, 0.9965728521347046], "14": ["vertical_and_slash", 3048, 8144, 0.831355631351471], "15": ["vertical_and_slash", 11340, 16336, 0.9474310874938965], "16": ["vertical_and_slash", 11340, 16336, 0.9529578685760498], "17": ["vertical_and_slash", 11340, 16336, 0.9589705467224121], "18": ["vertical_and_slash", 7244, 12240, 0.9103161692619324], "19": ["vertical_and_slash", 11340, 16336, 0.9817567467689514], "20": ["vertical_and_slash", 11340, 16336, 0.9756876230239868], "21": ["vertical_and_slash", 7244, 12240, 0.9710824489593506], "22": ["vertical_and_slash", 11340, 16336, 0.9776445627212524], "23": ["vertical_and_slash", 11340, 16336, 0.9071230888366699], "24": ["vertical_and_slash", 1000, 6096, 0.9814715385437012], "25": ["vertical_and_slash", 1000, 6096, 0.9802733659744263], "26": ["vertical_and_slash", 1000, 6096, 0.9048901200294495], "27": ["vertical_and_slash", 7244, 12240, 0.948653519153595]}, {"0": ["vertical_and_slash", 30, 800, 0.9610792398452759], "1": ["vertical_and_slash", 30, 800, 0.9808367490768433], "2": ["vertical_and_slash", 3048, 8144, 0.8854068517684937], "3": ["vertical_and_slash", 6344, 6944, 0.95703125], "4": ["vertical_and_slash", 100, 800, 0.95703125], "5": ["vertical_and_slash", 3048, 8144, 0.8755441904067993], "6": ["vertical_and_slash", 100, 800, 0.92578125], "7": ["vertical_and_slash", 100, 800, 0.921875], "8": ["vertical_and_slash", 9192, 14288, 0.6833025813102722], "9": ["vertical_and_slash", 5096, 10192, 0.7133266925811768], "10": ["vertical_and_slash", 1000, 6096, 0.9820693731307983], "11": ["vertical_and_slash", 1000, 6096, 0.9388710856437683], "12": ["vertical_and_slash", 3048, 8144, 0.8800644278526306], "13": ["vertical_and_slash", 4196, 4896, 0.98828125], "14": ["vertical_and_slash", 1000, 6096, 0.9447485208511353], "15": ["vertical_and_slash", 1000, 6096, 0.9788766503334045], "16": ["vertical_and_slash", 1000, 6096, 0.9929926991462708], "17": ["vertical_and_slash", 7144, 12240, 0.8362777233123779], "18": ["vertical_and_slash", 3048, 8144, 0.8786005973815918], "19": ["vertical_and_slash", 7244, 12240, 0.9762356281280518], "20": ["vertical_and_slash", 1000, 6096, 0.9894784688949585], "21": ["vertical_and_slash", 1000, 6096, 0.9231916666030884], "22": ["vertical_and_slash", 1000, 6096, 0.9846755266189575], "23": ["vertical_and_slash", 1000, 6096, 0.9899857640266418], "24": ["vertical_and_slash", 1000, 6096, 0.9508718848228455], "25": ["vertical_and_slash", 1000, 6096, 0.9378311038017273], "26": ["vertical_and_slash", 13388, 18384, 0.895405650138855], "27": ["vertical_and_slash", 1000, 6096, 0.969482421875]}, {"0": ["vertical_and_slash", 1000, 6096, 0.9123888611793518], "1": ["vertical_and_slash", 7244, 12240, 0.9673317074775696], "2": ["vertical_and_slash", 7244, 12240, 0.9695746302604675], "3": ["vertical_and_slash", 1000, 6096, 0.9790319204330444], "4": ["vertical_and_slash", 11340, 16336, 0.9740945100784302], "5": ["vertical_and_slash", 11340, 16336, 0.9472271800041199], "6": ["vertical_and_slash", 1000, 6096, 0.9376558661460876], "7": ["vertical_and_slash", 1000, 6096, 0.9759783148765564], "8": ["vertical_and_slash", 100, 800, 0.984375], "9": ["vertical_and_slash", 100, 800, 0.9921875], "10": ["vertical_and_slash", 3500, 100, 0.9970564246177673], "11": ["vertical_and_slash", 9744, 6244, 0.9889124035835266], "12": ["vertical_and_slash", 100, 800, 0.9765625], "13": ["vertical_and_slash", 11340, 16336, 0.9012805819511414], "14": ["vertical_and_slash", 1000, 6096, 0.939403235912323], "15": ["vertical_and_slash", 30, 800, 0.9993904829025269], "16": ["vertical_and_slash", 7244, 12240, 0.9905298352241516], "17": ["vertical_and_slash", 5096, 10192, 0.7282559275627136], "18": ["vertical_and_slash", 1000, 6096, 0.9881381988525391], "19": ["vertical_and_slash", 1000, 6096, 0.9709164500236511], "20": ["vertical_and_slash", 1000, 6096, 0.9852944016456604], "21": ["vertical_and_slash", 1000, 6096, 0.9899225234985352], "22": ["vertical_and_slash", 11340, 16336, 0.9815132021903992], "23": ["vertical_and_slash", 1000, 6096, 0.9717292785644531], "24": ["vertical_and_slash", 7244, 12240, 0.9921572208404541], "25": ["vertical_and_slash", 11340, 16336, 0.9181587100028992], "26": ["vertical_and_slash", 1000, 6096, 0.9939910769462585], "27": ["vertical_and_slash", 7244, 12240, 0.9894195199012756]}, {"0": ["vertical_and_slash", 5096, 10192, 0.9363827705383301], "1": ["vertical_and_slash", 11340, 16336, 0.9809366464614868], "2": ["vertical_and_slash", 1000, 6096, 0.9730969071388245], "3": ["vertical_and_slash", 13388, 18384, 0.8695287704467773], "4": ["vertical_and_slash", 11340, 16336, 0.9124827980995178], "5": ["vertical_and_slash", 11340, 16336, 0.7494962215423584], "6": ["vertical_and_slash", 13388, 18384, 0.8308557868003845], "7": ["vertical_and_slash", 11340, 16336, 0.957757830619812], "8": ["vertical_and_slash", 1000, 6096, 0.9518009424209595], "9": ["vertical_and_slash", 1000, 6096, 0.9622867703437805], "10": ["vertical_and_slash", 1000, 6096, 0.979856550693512], "11": ["vertical_and_slash", 1000, 6096, 0.9948192834854126], "12": ["vertical_and_slash", 7244, 12240, 0.9975912570953369], "13": ["vertical_and_slash", 7244, 12240, 0.9956138730049133], "14": ["vertical_and_slash", 1000, 6096, 0.9788697957992554], "15": ["vertical_and_slash", 6344, 6944, 1.0], "16": ["vertical_and_slash", 7244, 12240, 0.9795857667922974], "17": ["vertical_and_slash", 11340, 16336, 0.9933436512947083], "18": ["vertical_and_slash", 1000, 6096, 0.9908619523048401], "19": ["vertical_and_slash", 7244, 12240, 0.9774454832077026], "20": ["vertical_and_slash", 1000, 6096, 0.9626350402832031], "21": ["vertical_and_slash", 9292, 14288, 0.823958158493042], "22": ["vertical_and_slash", 11340, 16336, 0.9598273634910583], "23": ["vertical_and_slash", 1000, 6096, 0.9597938656806946], "24": ["vertical_and_slash", 11340, 16336, 0.9751371145248413], "25": ["vertical_and_slash", 7244, 12240, 0.9830336570739746], "26": ["vertical_and_slash", 7244, 12240, 0.9900059103965759], "27": ["vertical_and_slash", 11340, 16336, 0.9930396676063538]}, {"0": ["vertical_and_slash", 4196, 4896, 1.0], "1": ["vertical_and_slash", 1000, 6096, 0.9948315024375916], "2": ["vertical_and_slash", 11340, 16336, 0.9978001117706299], "3": ["vertical_and_slash", 1000, 6096, 0.9911418557167053], "4": ["vertical_and_slash", 1000, 6096, 0.9911423921585083], "5": ["vertical_and_slash", 1000, 6096, 0.9994310140609741], "6": ["vertical_and_slash", 1000, 6096, 0.9933038949966431], "7": ["vertical_and_slash", 1000, 6096, 0.9815270304679871], "8": ["vertical_and_slash", 1000, 6096, 0.9188183546066284], "9": ["vertical_and_slash", 7244, 12240, 0.949191689491272], "10": ["vertical_and_slash", 10440, 11040, 0.99609375], "11": ["vertical_and_slash", 11340, 16336, 0.9600533246994019], "12": ["vertical_and_slash", 11340, 16336, 0.9197850823402405], "13": ["vertical_and_slash", 11340, 16336, 0.9567902684211731], "14": ["vertical_and_slash", 7244, 12240, 0.9746363759040833], "15": ["vertical_and_slash", 7244, 12240, 0.9832977652549744], "16": ["vertical_and_slash", 1000, 6096, 0.9724404811859131], "17": ["vertical_and_slash", 1000, 6096, 0.9983720183372498], "18": ["vertical_and_slash", 7244, 12240, 0.9574311375617981], "19": ["vertical_and_slash", 11340, 16336, 0.9586833715438843], "20": ["vertical_and_slash", 7244, 12240, 0.9386707544326782], "21": ["vertical_and_slash", 7596, 4196, 0.9758472442626953], "22": ["vertical_and_slash", 1000, 6096, 0.9404810070991516], "23": ["vertical_and_slash", 9744, 6244, 0.9920862913131714], "24": ["vertical_and_slash", 1000, 6096, 0.9855319261550903], "25": ["vertical_and_slash", 1000, 6096, 0.9087734818458557], "26": ["vertical_and_slash", 1000, 6096, 0.9804069995880127], "27": ["vertical_and_slash", 1000, 6096, 0.9705759882926941]}, {"0": ["vertical_and_slash", 1000, 6096, 0.9644368290901184], "1": ["vertical_and_slash", 30, 800, 0.9986089468002319], "2": ["vertical_and_slash", 1000, 6096, 0.9745039343833923], "3": ["vertical_and_slash", 1000, 6096, 0.9963008761405945], "4": ["vertical_and_slash", 7596, 4196, 0.9790559411048889], "5": ["vertical_and_slash", 1000, 6096, 0.9741643071174622], "6": ["vertical_and_slash", 1000, 6096, 0.9873979687690735], "7": ["vertical_and_slash", 7596, 4196, 0.9851264357566833], "8": ["vertical_and_slash", 9744, 6244, 0.9803036451339722], "9": ["vertical_and_slash", 1000, 6096, 0.9777622818946838], "10": ["vertical_and_slash", 1000, 6096, 0.9912298321723938], "11": ["vertical_and_slash", 1000, 6096, 0.962704598903656], "12": ["vertical_and_slash", 7596, 4196, 0.9825693368911743], "13": ["vertical_and_slash", 5096, 10192, 0.7750788331031799], "14": ["vertical_and_slash", 1000, 6096, 0.9972183704376221], "15": ["vertical_and_slash", 1000, 6096, 0.9945282340049744], "16": ["vertical_and_slash", 9744, 6244, 0.9972888231277466], "17": ["vertical_and_slash", 1000, 6096, 0.9963790774345398], "18": ["vertical_and_slash", 1000, 6096, 0.9650697112083435], "19": ["vertical_and_slash", 7596, 4196, 0.9987449645996094], "20": ["vertical_and_slash", 5096, 10192, 0.9960426092147827], "21": ["vertical_and_slash", 7244, 12240, 0.9878199100494385], "22": ["vertical_and_slash", 1000, 6096, 0.9935839176177979], "23": ["vertical_and_slash", 7244, 12240, 0.9975365400314331], "24": ["vertical_and_slash", 1000, 6096, 0.968522310256958], "25": ["vertical_and_slash", 7244, 12240, 0.9933074116706848], "26": ["vertical_and_slash", 7244, 12240, 0.9941068887710571], "27": ["vertical_and_slash", 1000, 6096, 0.9910241365432739]}, {"0": ["vertical_and_slash", 1000, 6096, 0.9869405627250671], "1": ["vertical_and_slash", 9744, 6244, 0.9560899138450623], "2": ["vertical_and_slash", 9744, 6244, 0.9869239330291748], "3": ["vertical_and_slash", 3500, 100, 0.9870764017105103], "4": ["vertical_and_slash", 1000, 6096, 0.9273780584335327], "5": ["vertical_and_slash", 7596, 4196, 0.9860992431640625], "6": ["vertical_and_slash", 9744, 6244, 0.9839791059494019], "7": ["vertical_and_slash", 1000, 6096, 0.9863566756248474], "8": ["vertical_and_slash", 7244, 12240, 0.9857996106147766], "9": ["vertical_and_slash", 1000, 6096, 0.9804321527481079], "10": ["vertical_and_slash", 7244, 12240, 0.9676904082298279], "11": ["vertical_and_slash", 7596, 4196, 0.9908879399299622], "12": ["vertical_and_slash", 7244, 12240, 0.9486064314842224], "13": ["vertical_and_slash", 7244, 12240, 0.9652743339538574], "14": ["vertical_and_slash", 30, 800, 0.9901286363601685], "15": ["vertical_and_slash", 5096, 10192, 0.7799577116966248], "16": ["vertical_and_slash", 3048, 8144, 0.8891290426254272], "17": ["vertical_and_slash", 7596, 4196, 0.9794012308120728], "18": ["vertical_and_slash", 30, 800, 0.951410710811615], "19": ["vertical_and_slash", 30, 800, 0.9806299209594727], "20": ["vertical_and_slash", 3048, 8144, 0.8039274215698242], "21": ["vertical_and_slash", 1000, 6096, 0.9898089170455933], "22": ["vertical_and_slash", 1000, 6096, 0.986038863658905], "23": ["vertical_and_slash", 7244, 12240, 0.9948249459266663], "24": ["vertical_and_slash", 1000, 6096, 0.9429303407669067], "25": ["vertical_and_slash", 11340, 16336, 0.978610098361969], "26": ["vertical_and_slash", 1000, 6096, 0.9908936023712158], "27": ["vertical_and_slash", 1000, 6096, 0.9936961531639099]}, {"0": ["vertical_and_slash", 7244, 12240, 0.9856012463569641], "1": ["vertical_and_slash", 1000, 6096, 0.9747336506843567], "2": ["vertical_and_slash", 7596, 4196, 0.9834318161010742], "3": ["vertical_and_slash", 1000, 6096, 0.9862018823623657], "4": ["vertical_and_slash", 1000, 6096, 0.9937860369682312], "5": ["vertical_and_slash", 1000, 6096, 0.9886960387229919], "6": ["vertical_and_slash", 7596, 4196, 0.9887931942939758], "7": ["vertical_and_slash", 3048, 8144, 0.8064029216766357], "8": ["vertical_and_slash", 500, 700, 0.9941562414169312], "9": ["vertical_and_slash", 1000, 6096, 0.9482210278511047], "10": ["vertical_and_slash", 1000, 6096, 0.933103084564209], "11": ["vertical_and_slash", 500, 700, 0.9964345097541809], "12": ["vertical_and_slash", 1000, 6096, 0.9534383416175842], "13": ["vertical_and_slash", 1000, 6096, 0.9467671513557434], "14": ["vertical_and_slash", 7244, 12240, 0.9333358407020569], "15": ["vertical_and_slash", 11340, 16336, 0.9803599715232849], "16": ["vertical_and_slash", 1000, 6096, 0.9709724187850952], "17": ["vertical_and_slash", 1000, 6096, 0.9853048324584961], "18": ["vertical_and_slash", 1000, 6096, 0.9850086569786072], "19": ["vertical_and_slash", 7244, 12240, 0.9774631261825562], "20": ["vertical_and_slash", 1000, 6096, 0.9743291139602661], "21": ["vertical_and_slash", 3048, 8144, 0.8560544848442078], "22": ["vertical_and_slash", 3048, 8144, 0.8773953914642334], "23": ["vertical_and_slash", 1000, 6096, 0.9476152062416077], "24": ["vertical_and_slash", 1000, 6096, 0.9344698786735535], "25": ["vertical_and_slash", 11340, 16336, 0.9541553854942322], "26": ["vertical_and_slash", 1000, 6096, 0.9854223728179932], "27": ["vertical_and_slash", 1000, 6096, 0.9799894690513611]}, {"0": ["vertical_and_slash", 1000, 6096, 0.9208858609199524], "1": ["vertical_and_slash", 1000, 6096, 0.9677489995956421], "2": ["vertical_and_slash", 1000, 6096, 0.9397966861724854], "3": ["vertical_and_slash", 1000, 6096, 0.9308995008468628], "4": ["vertical_and_slash", 1000, 6096, 0.9643043279647827], "5": ["vertical_and_slash", 1000, 6096, 0.9657536149024963], "6": ["vertical_and_slash", 3048, 8144, 0.8598212599754333], "7": ["vertical_and_slash", 10370, 11040, 0.9467752575874329], "8": ["vertical_and_slash", 1000, 6096, 0.9844503998756409], "9": ["vertical_and_slash", 1000, 6096, 0.9382181763648987], "10": ["vertical_and_slash", 10370, 11040, 0.972872257232666], "11": ["vertical_and_slash", 10370, 11040, 0.9927771687507629], "12": ["vertical_and_slash", 10370, 11040, 0.9328325390815735], "13": ["vertical_and_slash", 10370, 11040, 0.9946746826171875], "14": ["vertical_and_slash", 1000, 6096, 0.9508710503578186], "15": ["vertical_and_slash", 1000, 6096, 0.9318876266479492], "16": ["vertical_and_slash", 1000, 6096, 0.9340384602546692], "17": ["vertical_and_slash", 7244, 12240, 0.9182395339012146], "18": ["vertical_and_slash", 1000, 6096, 0.9607776403427124], "19": ["vertical_and_slash", 1000, 6096, 0.9068328738212585], "20": ["vertical_and_slash", 1000, 6096, 0.9481955170631409], "21": ["vertical_and_slash", 1000, 6096, 0.9357800483703613], "22": ["vertical_and_slash", 3048, 8144, 0.8631651997566223], "23": ["vertical_and_slash", 7244, 12240, 0.9462882876396179], "24": ["vertical_and_slash", 3048, 8144, 0.808625340461731], "25": ["vertical_and_slash", 1000, 6096, 0.9675469398498535], "26": ["vertical_and_slash", 1000, 6096, 0.9622009992599487], "27": ["vertical_and_slash", 3048, 8144, 0.8711419701576233]}]
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,207 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"added_tokens_decoder": {
|
4 |
+
"151643": {
|
5 |
+
"content": "<|endoftext|>",
|
6 |
+
"lstrip": false,
|
7 |
+
"normalized": false,
|
8 |
+
"rstrip": false,
|
9 |
+
"single_word": false,
|
10 |
+
"special": true
|
11 |
+
},
|
12 |
+
"151644": {
|
13 |
+
"content": "<|im_start|>",
|
14 |
+
"lstrip": false,
|
15 |
+
"normalized": false,
|
16 |
+
"rstrip": false,
|
17 |
+
"single_word": false,
|
18 |
+
"special": true
|
19 |
+
},
|
20 |
+
"151645": {
|
21 |
+
"content": "<|im_end|>",
|
22 |
+
"lstrip": false,
|
23 |
+
"normalized": false,
|
24 |
+
"rstrip": false,
|
25 |
+
"single_word": false,
|
26 |
+
"special": true
|
27 |
+
},
|
28 |
+
"151646": {
|
29 |
+
"content": "<|object_ref_start|>",
|
30 |
+
"lstrip": false,
|
31 |
+
"normalized": false,
|
32 |
+
"rstrip": false,
|
33 |
+
"single_word": false,
|
34 |
+
"special": true
|
35 |
+
},
|
36 |
+
"151647": {
|
37 |
+
"content": "<|object_ref_end|>",
|
38 |
+
"lstrip": false,
|
39 |
+
"normalized": false,
|
40 |
+
"rstrip": false,
|
41 |
+
"single_word": false,
|
42 |
+
"special": true
|
43 |
+
},
|
44 |
+
"151648": {
|
45 |
+
"content": "<|box_start|>",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false,
|
50 |
+
"special": true
|
51 |
+
},
|
52 |
+
"151649": {
|
53 |
+
"content": "<|box_end|>",
|
54 |
+
"lstrip": false,
|
55 |
+
"normalized": false,
|
56 |
+
"rstrip": false,
|
57 |
+
"single_word": false,
|
58 |
+
"special": true
|
59 |
+
},
|
60 |
+
"151650": {
|
61 |
+
"content": "<|quad_start|>",
|
62 |
+
"lstrip": false,
|
63 |
+
"normalized": false,
|
64 |
+
"rstrip": false,
|
65 |
+
"single_word": false,
|
66 |
+
"special": true
|
67 |
+
},
|
68 |
+
"151651": {
|
69 |
+
"content": "<|quad_end|>",
|
70 |
+
"lstrip": false,
|
71 |
+
"normalized": false,
|
72 |
+
"rstrip": false,
|
73 |
+
"single_word": false,
|
74 |
+
"special": true
|
75 |
+
},
|
76 |
+
"151652": {
|
77 |
+
"content": "<|vision_start|>",
|
78 |
+
"lstrip": false,
|
79 |
+
"normalized": false,
|
80 |
+
"rstrip": false,
|
81 |
+
"single_word": false,
|
82 |
+
"special": true
|
83 |
+
},
|
84 |
+
"151653": {
|
85 |
+
"content": "<|vision_end|>",
|
86 |
+
"lstrip": false,
|
87 |
+
"normalized": false,
|
88 |
+
"rstrip": false,
|
89 |
+
"single_word": false,
|
90 |
+
"special": true
|
91 |
+
},
|
92 |
+
"151654": {
|
93 |
+
"content": "<|vision_pad|>",
|
94 |
+
"lstrip": false,
|
95 |
+
"normalized": false,
|
96 |
+
"rstrip": false,
|
97 |
+
"single_word": false,
|
98 |
+
"special": true
|
99 |
+
},
|
100 |
+
"151655": {
|
101 |
+
"content": "<|image_pad|>",
|
102 |
+
"lstrip": false,
|
103 |
+
"normalized": false,
|
104 |
+
"rstrip": false,
|
105 |
+
"single_word": false,
|
106 |
+
"special": true
|
107 |
+
},
|
108 |
+
"151656": {
|
109 |
+
"content": "<|video_pad|>",
|
110 |
+
"lstrip": false,
|
111 |
+
"normalized": false,
|
112 |
+
"rstrip": false,
|
113 |
+
"single_word": false,
|
114 |
+
"special": true
|
115 |
+
},
|
116 |
+
"151657": {
|
117 |
+
"content": "<tool_call>",
|
118 |
+
"lstrip": false,
|
119 |
+
"normalized": false,
|
120 |
+
"rstrip": false,
|
121 |
+
"single_word": false,
|
122 |
+
"special": false
|
123 |
+
},
|
124 |
+
"151658": {
|
125 |
+
"content": "</tool_call>",
|
126 |
+
"lstrip": false,
|
127 |
+
"normalized": false,
|
128 |
+
"rstrip": false,
|
129 |
+
"single_word": false,
|
130 |
+
"special": false
|
131 |
+
},
|
132 |
+
"151659": {
|
133 |
+
"content": "<|fim_prefix|>",
|
134 |
+
"lstrip": false,
|
135 |
+
"normalized": false,
|
136 |
+
"rstrip": false,
|
137 |
+
"single_word": false,
|
138 |
+
"special": false
|
139 |
+
},
|
140 |
+
"151660": {
|
141 |
+
"content": "<|fim_middle|>",
|
142 |
+
"lstrip": false,
|
143 |
+
"normalized": false,
|
144 |
+
"rstrip": false,
|
145 |
+
"single_word": false,
|
146 |
+
"special": false
|
147 |
+
},
|
148 |
+
"151661": {
|
149 |
+
"content": "<|fim_suffix|>",
|
150 |
+
"lstrip": false,
|
151 |
+
"normalized": false,
|
152 |
+
"rstrip": false,
|
153 |
+
"single_word": false,
|
154 |
+
"special": false
|
155 |
+
},
|
156 |
+
"151662": {
|
157 |
+
"content": "<|fim_pad|>",
|
158 |
+
"lstrip": false,
|
159 |
+
"normalized": false,
|
160 |
+
"rstrip": false,
|
161 |
+
"single_word": false,
|
162 |
+
"special": false
|
163 |
+
},
|
164 |
+
"151663": {
|
165 |
+
"content": "<|repo_name|>",
|
166 |
+
"lstrip": false,
|
167 |
+
"normalized": false,
|
168 |
+
"rstrip": false,
|
169 |
+
"single_word": false,
|
170 |
+
"special": false
|
171 |
+
},
|
172 |
+
"151664": {
|
173 |
+
"content": "<|file_sep|>",
|
174 |
+
"lstrip": false,
|
175 |
+
"normalized": false,
|
176 |
+
"rstrip": false,
|
177 |
+
"single_word": false,
|
178 |
+
"special": false
|
179 |
+
}
|
180 |
+
},
|
181 |
+
"additional_special_tokens": [
|
182 |
+
"<|im_start|>",
|
183 |
+
"<|im_end|>",
|
184 |
+
"<|object_ref_start|>",
|
185 |
+
"<|object_ref_end|>",
|
186 |
+
"<|box_start|>",
|
187 |
+
"<|box_end|>",
|
188 |
+
"<|quad_start|>",
|
189 |
+
"<|quad_end|>",
|
190 |
+
"<|vision_start|>",
|
191 |
+
"<|vision_end|>",
|
192 |
+
"<|vision_pad|>",
|
193 |
+
"<|image_pad|>",
|
194 |
+
"<|video_pad|>"
|
195 |
+
],
|
196 |
+
"bos_token": null,
|
197 |
+
"chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
|
198 |
+
"clean_up_tokenization_spaces": false,
|
199 |
+
"eos_token": "<|im_end|>",
|
200 |
+
"errors": "replace",
|
201 |
+
"model_max_length": 1010000,
|
202 |
+
"pad_token": "<|endoftext|>",
|
203 |
+
"split_special_tokens": false,
|
204 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
205 |
+
"unk_token": null,
|
206 |
+
"add_bos_token": false
|
207 |
+
}
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|