File size: 4,461 Bytes
bedbdc7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 |
---
base_model: mistralai/Mistral-Nemo-Base-2407
library_name: peft
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: qlora_outputs
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
base_model: mistralai/Mistral-Nemo-Base-2407
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
load_in_8bit: false
load_in_4bit: true
strict: false
plugins:
- axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_swiglu: true
liger_fused_linear_cross_entropy: true
adapter: qlora
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
datasets:
- path: /home/austin/disk1/summaries_fixed.jsonl
type: sharegpt
dataset_prepared_path: last_run_prepared
val_set_size: 0.01
output_dir: ./qlora_outputs
sequence_len: 8192
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true
wandb_project: summarization-qlora
wandb_entity:
wandb_watch:
wandb_name: actual_run1
wandb_log_model:
#unsloth_cross_entropy_loss: true
gradient_accumulation_steps: 1
micro_batch_size: 1
num_epochs: 4
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
logging_steps: 1
xformers_attention: false
flash_attention: true
loss_watchdog_threshold: 5.0
loss_watchdog_patience: 3
warmup_steps: 25
evals_per_epoch: 4
eval_table_size:
saves_per_epoch: 4
debug:
deepspeed: ./deepspeed_configs/zero2.json
weight_decay: 0.0
fsdp:
# - full_shard
# - auto_wrap
fsdp_config:
# fsdp_limit_all_gathers: true
# fsdp_activation_checkpointing: true
# fsdp_sync_module_states: true
# fsdp_offload_params: false
# fsdp_use_orig_params: false
# fsdp_cpu_ram_efficient_loading: false
# fsdp_transformer_layer_cls_to_wrap: MistralDecoderLayer
# fsdp_state_dict_type: FULL_STATE_DICT
# fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
special_tokens:
pad_token: </s>
```
</details><br>
# qlora_outputs
This model is a fine-tuned version of [mistralai/Mistral-Nemo-Base-2407](https://huggingface.co/mistralai/Mistral-Nemo-Base-2407) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.5617
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 4
- total_eval_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 25
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 2.0177 | 0.0014 | 1 | 1.6514 |
| 1.6259 | 0.2507 | 177 | 1.2032 |
| 1.4232 | 0.5014 | 354 | 1.1897 |
| 1.6835 | 0.7521 | 531 | 1.1985 |
| 1.6514 | 1.0028 | 708 | 1.1874 |
| 1.4538 | 1.2365 | 885 | 1.2166 |
| 1.2421 | 1.4873 | 1062 | 1.2224 |
| 1.2844 | 1.7380 | 1239 | 1.2330 |
| 1.4152 | 1.9887 | 1416 | 1.2345 |
| 1.1668 | 2.2252 | 1593 | 1.3476 |
| 1.1249 | 2.4759 | 1770 | 1.3608 |
| 0.921 | 2.7266 | 1947 | 1.3793 |
| 0.7824 | 2.9773 | 2124 | 1.3906 |
| 1.1759 | 3.2040 | 2301 | 1.5438 |
| 0.6625 | 3.4547 | 2478 | 1.5644 |
| 0.8959 | 3.7054 | 2655 | 1.5617 |
### Framework versions
- PEFT 0.12.0
- Transformers 4.44.0
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1 |