--- base_model: mistralai/Mistral-Nemo-Base-2407 library_name: peft license: apache-2.0 tags: - generated_from_trainer model-index: - name: home/austin/disk2/axolotl_storage/pyg3_qlora_2e-4 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml base_model: mistralai/Mistral-Nemo-Base-2407 model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer load_in_8bit: false load_in_4bit: true strict: false plugins: - axolotl.integrations.liger.LigerPlugin liger_rope: true liger_rms_norm: true liger_swiglu: true liger_fused_linear_cross_entropy: true adapter: qlora lora_r: 32 lora_alpha: 16 lora_dropout: 0.05 lora_target_linear: true lora_fan_in_fan_out: loraplus_lr_ratio: 2 chat_template: chatml datasets: - path: /home/austin/disk2/axolotl_data/fixed_pyg3.jsonl type: sharegpt conversation: chatml dataset_prepared_path: /home/austin/disk2/axolotl_data/data_tokenized val_set_size: 0.01 output_dir: /home/austin/disk2/axolotl_storage/pyg3_qlora_2e-4 sequence_len: 8192 sample_packing: true eval_sample_packing: true pad_to_sequence_len: true wandb_project: pyg3-qlora wandb_entity: wandb_watch: wandb_name: 1e-5 wandb_log_model: #unsloth_cross_entropy_loss: true gradient_accumulation_steps: 1 micro_batch_size: 3 num_epochs: 1 optimizer: paged_adamw_8bit lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true gradient_checkpointing_kwargs: use_reentrant: false early_stopping_patience: resume_from_checkpoint: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 100 evals_per_epoch: 10 eval_table_size: saves_per_epoch: 10 debug: deepspeed: deepspeed_configs/zero2.json weight_decay: 0.01 fsdp: fsdp_config: special_tokens: pad_token: ```

# home/austin/disk2/axolotl_storage/pyg3_qlora_2e-4 This model is a fine-tuned version of [mistralai/Mistral-Nemo-Base-2407](https://huggingface.co/mistralai/Mistral-Nemo-Base-2407) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8024 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 3 - eval_batch_size: 3 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 24 - total_eval_batch_size: 24 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.8656 | 0.0006 | 1 | 1.1181 | | 1.5716 | 0.1004 | 175 | 0.8479 | | 1.6573 | 0.2008 | 350 | 0.8308 | | 1.8387 | 0.3012 | 525 | 0.8230 | | 1.5855 | 0.4016 | 700 | 0.8167 | | 1.7139 | 0.5020 | 875 | 0.8123 | | 1.5684 | 0.6024 | 1050 | 0.8087 | | 1.6986 | 0.7028 | 1225 | 0.8055 | | 1.6505 | 0.8032 | 1400 | 0.8035 | | 1.6028 | 0.9036 | 1575 | 0.8024 | ### Framework versions - PEFT 0.12.0 - Transformers 4.44.0 - Pytorch 2.4.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1