File size: 3,886 Bytes
193db0d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
---
base_model: mistralai/Mistral-Nemo-Base-2407
library_name: peft
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: home/austin/disk2/axolotl_storage/pyg3_qlora_2e-4
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>

axolotl version: `0.4.1`
```yaml
base_model: mistralai/Mistral-Nemo-Base-2407
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer

load_in_8bit: false
load_in_4bit: true
strict: false

plugins:
  - axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_swiglu: true
liger_fused_linear_cross_entropy: true

adapter: qlora
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:

loraplus_lr_ratio: 2  

chat_template: chatml

datasets:
  - path: /home/austin/disk2/axolotl_data/fixed_pyg3.jsonl
    type: sharegpt
    conversation: chatml

dataset_prepared_path: /home/austin/disk2/axolotl_data/data_tokenized
val_set_size: 0.01
output_dir: /home/austin/disk2/axolotl_storage/pyg3_qlora_2e-4

sequence_len: 8192
sample_packing: true
eval_sample_packing: true
pad_to_sequence_len: true

wandb_project: pyg3-qlora
wandb_entity:
wandb_watch:
wandb_name: 1e-5
wandb_log_model:
 
 #unsloth_cross_entropy_loss: true

gradient_accumulation_steps: 1
micro_batch_size: 3
num_epochs: 1
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 0.0002

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
gradient_checkpointing_kwargs:
  use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_steps: 100
evals_per_epoch: 10
eval_table_size:
saves_per_epoch: 10
debug:
deepspeed: deepspeed_configs/zero2.json
weight_decay: 0.01
fsdp:
fsdp_config:
special_tokens:
  pad_token: </s>

```

</details><br>

# home/austin/disk2/axolotl_storage/pyg3_qlora_2e-4

This model is a fine-tuned version of [mistralai/Mistral-Nemo-Base-2407](https://huggingface.co/mistralai/Mistral-Nemo-Base-2407) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8024

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 3
- eval_batch_size: 3
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 24
- total_eval_batch_size: 24
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 1

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.8656        | 0.0006 | 1    | 1.1181          |
| 1.5716        | 0.1004 | 175  | 0.8479          |
| 1.6573        | 0.2008 | 350  | 0.8308          |
| 1.8387        | 0.3012 | 525  | 0.8230          |
| 1.5855        | 0.4016 | 700  | 0.8167          |
| 1.7139        | 0.5020 | 875  | 0.8123          |
| 1.5684        | 0.6024 | 1050 | 0.8087          |
| 1.6986        | 0.7028 | 1225 | 0.8055          |
| 1.6505        | 0.8032 | 1400 | 0.8035          |
| 1.6028        | 0.9036 | 1575 | 0.8024          |


### Framework versions

- PEFT 0.12.0
- Transformers 4.44.0
- Pytorch 2.4.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1