File size: 8,180 Bytes
f569aa3
 
8b0472e
 
f569aa3
 
 
 
 
bf0770a
f569aa3
a8dfc11
f569aa3
 
 
7a07ccf
 
a8dfc11
f569aa3
 
 
a8dfc11
f569aa3
 
 
60e056d
f569aa3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf0770a
f569aa3
 
 
 
 
 
 
 
d4585f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f569aa3
 
a8dfc11
f569aa3
 
 
a8dfc11
 
 
 
 
 
 
 
f569aa3
 
 
 
 
 
 
 
 
 
a8dfc11
f569aa3
 
 
 
 
8ca22b3
 
 
 
 
 
f569aa3
8ca22b3
 
 
 
 
 
 
 
f569aa3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
---
license: apache-2.0
library_name: transformers
pipeline_tag: text-generation
---
# Eurus-2-7B-PRIME

## Links

- ๐Ÿ“œ [Blog](https://curvy-check-498.notion.site/Process-Reinforcement-through-Implicit-Rewards-15f4fcb9c42180f1b498cc9b2eaf896f)
- ๐Ÿค— [PRIME Collection](https://huggingface.co/PRIME-RL)
- ๐Ÿค— [RL Data](https://huggingface.co/datasets/PRIME-RL/Eurus-2-RL-Data)

## Introduction

![image-20241230162026156](./figures/results.png)

Eurus-2-7B-PRIME is trained using **PRIME** (**P**rocess **R**einforcement through **IM**plicit r**E**ward) method, an open-source solution for online reinforcement learning (RL) with process rewards, to advance reasoning abilities of language models beyond imitation or distillation. It starts with [Eurus-2-7B-SFT](https://huggingface.co/PRIME-RL/Eurus-2-7B-SFT) and trains on [Eurus-2-RL-Data](https://huggingface.co/datasets/PRIME-RL/Eurus-2-RL-Data).

<img src="./figures/prm.gif" alt="prm" style="zoom: 33%;" />

As shown in the animation above, in PRIME, the policy model and PRM are both initialized with the SFT model. For each RL iteration, the policy model first generates rollouts. Then, the [implicit PRM](https://arxiv.org/abs/2412.01981) and outcome verifier score the rollouts, and the implicit PRM gets updated on the rollouts with the outcome reward. Finally, the outcome reward \\(r_o\\) and process reward \\(r_p\\) are combined and used to update the policy model. 

The PRIME implementation pseudocode is as follows:

<img src="./figures/prime-algo.jpg" alt="prime-algo" style="zoom: 50%;" />

The algorithm flow includes:

1. **Prompt filtering** based on policy model performance, only preserving those on which the policy model \\(\pi_\theta\\) achieves a accuracy between 0.2 and 0.8.
2. **Calculate implicit process reward** \\(r^t\\).
3. **Update Implicit PRM** \\(\pi_\psi\\) based on predicted implicit process reward \\(r^t\\) and ground truth outcome label \\(r\\).
4. **Advantage estimation with RLOO.** Specifically, we first calculate the return of outcome rewards and implicit process rewards separately:

- For ground truth outcome rewards, we directly adopt RLOO without any modification.

- For implicit process rewards, we perform a three-step process to calculate return: (1) Use the averaged implicit process rewards to calculate the leave-one-out baseline (2) Normalize the process reward at step \\(t\\) by subtracting the baseline; (3) Calculate the discounted return for each response.

  Finally, advantage is set to the combination of both returns. 

โ€‹    5. **Update the policy** \\(\pi_\theta\\) using PPO loss for legit importance sampling.

## Usage

We apply tailored prompts for coding and math task:


**Coding**

```
{question} + "\n\nWrite Python code to solve the problem. Present the code in \n```python\nYour code\n```\nat the end."
```

**Math**

```
{question} + "\n\nPresent the answer in LaTex format: \\boxed{Your answer}"
```


```python
import os
from tqdm import tqdm
import torch
from transformers import AutoTokenizer
from vllm import LLM, SamplingParams
os.environ["NCCL_IGNORE_DISABLED_P2P"] = "1"
os.environ["TOKENIZERS_PARALLELISM"] = "true"

def generate(question_list,model_path):
    llm = LLM(
        model=model_path,
        trust_remote_code=True,
        tensor_parallel_size=torch.cuda.device_count(),
        gpu_memory_utilization=0.90,
    )
    sampling_params = SamplingParams(max_tokens=8192,
                                    temperature=0.0,
                                    n=1)
    outputs = llm.generate(question_list, sampling_params, use_tqdm=True)
    completions = [[output.text for output in output_item.outputs] for output_item in outputs]
    return completions

def make_conv_hf(question, tokenizer):
    # for math problem
    content = question + "\n\nPresent the answer in LaTex format: \\boxed{Your answer}"
    # for code problem
    # content = question + "\n\nWrite Python code to solve the problem. Present the code in \n```python\nYour code\n```\nat the end." 
    msg = [
        {"role": "user", "content": content}
    ]
    chat = tokenizer.apply_chat_template(msg, tokenize=False, add_generation_prompt=True)
    return chat
    
def run():
    model_path = "PRIME-RL/Eurus-2-7B-PRIME"
    all_problems = [
        "which number is larger? 9.11 or 9.9?"
    ]
    tokenizer = AutoTokenizer.from_pretrained(model_path)
    completions = generate([make_conv_hf(problem_data, tokenizer) for problem_data in all_problems],model_path)
    print(completions)
    # [['[ASSESS]\n\n# The problem asks us to compare two decimal numbers, 9.11 and 9.9, to determine which one is larger.\n# We need to compare the whole parts and the decimal parts of the numbers.\n\nNext action: [ADVANCE]\n\n# Compare the whole parts of the numbers: both 9.11 and 9.9 have the same whole part, which is 9.\n# Compare the decimal parts of the numbers: 0.11 (from 9.11) is less than 0.9 (from 9.9).\n\nNext action: [ADVANCE]\n\n# Since the whole parts are the same and the decimal part of 9.9 is greater than the decimal part of 9.11, we can conclude that 9.9 is larger than 9.11.\n\nNext action: [OUTPUT]\n\nThe final answer is $\\boxed{9.9}$.\n\n']]
if __name__ == "__main__":
    run()
```



## Evaluation

Through PRIME, we successfully achieve substantial improvements on key reasoning benchmarks over our SFT version of the model, leading to **16.7%** improvement on average, and over **20%** on AMC&AIME competitions. Our final model Eurus-2-7B-PRIME, based on Qwen-2.5-Math-7B-Base, surpassed its instruct version on 5 key reasoning benchmarks. 

The final results are presented below:

|               | **Eurus-2-7B-PRIME** | **Eurus-2-7B-SFT** | **Qwen-2.5-Math-7B-Instruct** | **Llama-3.1-70B-Instruct** | **GPT-4o** |
| ------------- | -------------------- | ------------------ | ----------------------------- | -------------------------- | ---------- |
| AIME 2024     | **26.7 (+23.3)**     | 3.3                | 13.3                          | 16.7                       | 9.3        |
| MATH-500      | 79.2 (+14.1)         | 65.1               | **79.8**                      | 64.6                       | 76.4       |
| AMC           | **57.8 (+27.7)**     | 30.1               | 50.6                          | 30.1                       | 45.8       |
| Minerva Math  | **38.6 (+5.9)**      | 32.7               | 34.6                          | 35.3                       | 36.8       |
| OlympiadBench | 42.1 (+12.3)         | 29.8               | 40.7                          | 31.9                       | **43.3**   |
| Avg.          | **48.9 (+ 16.7)**    | 32.2               | 43.8                          | 36.4                       | 43.3       |


We achieved this with only 1/10 data and model resources compared with Qwen-Math.

|            | **Eurus-2-7B-PRIME**               | **Qwen2.5-Math-7B-Instruct**    |
| ---------- | ---------------------------------- | ------------------------------- |
| Base Model | Qwen2.5-Math-7B                    | Qwen2.5-Math-7B                 |
| SFT Data   | **230K (open-source)**             | 2.5M (open-source and in-house) |
| RM Data    | **0**                              | 618K (in-house)                 |
| RM         | **Eurus-2-7B-SFT**                 | Qwen2.5-Math-RM (72B)           |
| RL Data    | **150K queries  \\(\times\\)4 samples** | 66K queries \\(\times\\) 32 samples |



## Citation

```latex
@misc{cui2024process,
  title={Process Reinforcement through Implicit Rewards},
  author={Ganqu Cui and Lifan Yuan and Zefan Wang and Hanbin Wang and Wendi Li and Bingxiang He and Yuchen Fan and Tianyu Yu and Qixin Xu and Weize Chen and Jiarui Yuan and Huayu Chen and Kaiyan Zhang and Xingtai Lv and Shuo Wang and Yuan Yao and Hao Peng and Yu Cheng and Zhiyuan Liu and Maosong Sun and Bowen Zhou and Ning Ding},
  year={2025}
}
```

```latex
@article{yuan2024implicitprm,
  title={Free Process Rewards without Process Labels},
  author={Lifan Yuan and Wendi Li and Huayu Chen and Ganqu Cui and Ning Ding and Kaiyan Zhang and Bowen Zhou and Zhiyuan Liu and Hao Peng},
  journal={arXiv preprint arXiv:2412.01981},
  year={2024}
}
```