--- license: mit base_model: - SimianLuo/LCM_Dreamshaper_v7 base_model_relation: quantized --- # LCM_Dreamshaper_v7-int8-ov * Model creator: [SimianLuo](https://huggingface.co/SimianLuo) * Original model: [SimianLuo/LCM_Dreamshaper_v7](https://huggingface.co/SimianLuo/LCM_Dreamshaper_v7) ## Description This is [SimianLuo/LCM_Dreamshaper_v7](https://huggingface.co/SimianLuo/LCM_Dreamshaper_v7) model converted to the [OpenVINO™ IR](https://docs.openvino.ai/2024/documentation/openvino-ir-format.html) (Intermediate Representation) format with weights compressed to INT8 by [NNCF](https://github.com/openvinotoolkit/nncf). ## Quantization Parameters Weight compression was performed using `nncf.compress_weights` with the following parameters: * mode: **INT8_ASYM** * ratio: **1.0** For more information on quantization, check the [OpenVINO model optimization guide](https://docs.openvino.ai/2024/openvino-workflow/model-optimization-guide/weight-compression.html). ## Compatibility The provided OpenVINO™ IR model is compatible with: * OpenVINO version 2024.5.0 and higher * Optimum Intel 1.21.0 and higher ## Running Model Inference with [Optimum Intel](https://huggingface.co/docs/optimum/intel/index) 1. Install packages required for using [Optimum Intel](https://huggingface.co/docs/optimum/intel/index) integration with the OpenVINO backend: ``` pip install optimum[openvino] ``` 2. Run model inference: ``` from optimum.intel.openvino import OVDiffusionPipeline model_id = "OpenVINO/LCM_Dreamshaper_v7-int8-ov" pipeline = OVDiffusionPipeline.from_pretrained(model_id) prompt = "sailing ship in storm by Rembrandt" images = pipeline(prompt, num_inference_steps=4).images ``` ## Running Model Inference with [OpenVINO GenAI](https://github.com/openvinotoolkit/openvino.genai) 1. Install packages required for using OpenVINO GenAI. ``` pip install huggingface_hub pip install -U --pre --extra-index-url https://storage.openvinotoolkit.org/simple/wheels/nightly openvino openvino-tokenizers openvino-genai ``` 2. Download model from HuggingFace Hub ``` import huggingface_hub as hf_hub model_id = "OpenVINO/LCM_Dreamshaper_v7-int8-ov" model_path = "LCM_Dreamshaper_v7-int8-ov" hf_hub.snapshot_download(model_id, local_dir=model_path) ``` 3. Run model inference: ``` import openvino_genai as ov_genai from PIL import Image device = "CPU" pipe = ov_genai.Text2ImagePipeline(model_path, device) prompt = "sailing ship in storm by Rembrandt" image_tensor = pipe.generate(prompt, num_inference_steps=4) image = Image.fromarray(image_tensor.data[0]) ``` More GenAI usage examples can be found in OpenVINO GenAI library [docs](https://github.com/openvinotoolkit/openvino.genai/blob/master/src/README.md) and [samples](https://github.com/openvinotoolkit/openvino.genai?tab=readme-ov-file#openvino-genai-samples) ## Legal information The original model is distributed under [mit](https://choosealicense.com/licenses/mit/) license. More details can be found in [SimianLuo/LCM_Dreamshaper_v7](https://huggingface.co/SimianLuo/LCM_Dreamshaper_v7). ## Disclaimer Intel is committed to respecting human rights and avoiding causing or contributing to adverse impacts on human rights. See [Intel’s Global Human Rights Principles](https://www.intel.com/content/dam/www/central-libraries/us/en/documents/policy-human-rights.pdf). Intel’s products and software are intended only to be used in applications that do not cause or contribute to adverse impacts on human rights.