File size: 2,954 Bytes
3044868 7b5e93f 3044868 7b5e93f 3044868 7b5e93f ae49cd2 7b5e93f a321d50 ae49cd2 2faf197 7b5e93f 2faf197 3044868 7b5e93f 3044868 7b5e93f 3044868 7b5e93f ae49cd2 7b5e93f 3044868 7b5e93f 3044868 7b5e93f 3044868 7b5e93f 3044868 7b5e93f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 |
---
base_model:
- allura-org/Qwen2.5-32b-RP-Ink
- deepseek-ai/DeepSeek-R1-Distill-Qwen-32B
- Aryanne/QwentileSwap
- Daemontatox/Cogito-Ultima
library_name: transformers
tags:
- mergekit
- merge
---
# Qwetiapin
> There's no 'I' in 'brain damage'
![](https://files.catbox.moe/9k5p1v.png)
### Overview
An attempt to make QwentileSwap write even better by merging it with RP-Ink. And DeepSeek, because why not. However, I screwed up the first merge step by accidentally setting an extremely high epsilon value. Step2 wasn't planned, but due to a wonky tensor size mismatch error, I couldn't merge Step1 into QwentileSwap using sce, so I just threw in some random model. And that did, in fact, solve the issue.
The result? Well, it's usable, I guess. The slop is reduced, more details are brought up, but said details sometimes get messed up. It's fixed by a few swipes and there's a chance that it's caused by my sampler settings, but uhh I'll just leave them as they are.
Prompt format: ChatML
Settings: [This kinda works but I'm weird](https://files.catbox.moe/hmw87j.json)
### Quants
[Static](https://huggingface.co/mradermacher/Q2.5-Qwetiapin-32B-GGUF) | [Imatrix](https://huggingface.co/mradermacher/Q2.5-Qwetiapin-32B-i1-GGUF)
## Merge Details
### Merging Steps
### Step1
```yaml
dtype: bfloat16
tokenizer_source: base
merge_method: della_linear
parameters:
density: 0.5
epsilon: 0.4 #was supposed to be 0.04
lambda: 1.1
base_model: allura-org/Qwen2.5-32b-RP-Ink
models:
- model: deepseek-ai/DeepSeek-R1-Distill-Qwen-32B
parameters:
weight:
- filter: v_proj
value: [0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0]
- filter: o_proj
value: [1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1]
- filter: up_proj
value: [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
- filter: gate_proj
value: [0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0]
- filter: down_proj
value: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
- value: 0
- model: allura-org/Qwen2.5-32b-RP-Ink
parameters:
weight:
- filter: v_proj
value: [1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1]
- filter: o_proj
value: [0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0]
- filter: up_proj
value: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
- filter: gate_proj
value: [1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1]
- filter: down_proj
value: [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
- value: 1
```
### Step2
```yaml
models:
- model: Aryanne/QwentileSwap
parameters:
weight: [1.0, 0.9, 0.8, 0.9, 1.0]
- model: Daemontatox/Cogito-Ultima
parameters:
weight: [0, 0.1, 0.2, 0.1, 0]
merge_method: nuslerp
parameters:
nuslerp_row_wise: true
dtype: bfloat16
tokenizer_source: base
```
### Step3
```yaml
models:
- model: Step2
- model: Step1
merge_method: sce
base_model: Step2
parameters:
select_topk:
- value: [0.3, 0.35, 0.4, 0.35, 0.2]
dtype: bfloat16
``` |