File size: 2,954 Bytes
3044868
7b5e93f
 
 
 
 
3044868
 
 
 
 
 
7b5e93f
3044868
7b5e93f
 
ae49cd2
7b5e93f
 
 
a321d50
ae49cd2
 
 
 
 
2faf197
7b5e93f
 
 
2faf197
3044868
 
7b5e93f
3044868
7b5e93f
3044868
7b5e93f
 
 
 
 
 
ae49cd2
7b5e93f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3044868
7b5e93f
3044868
7b5e93f
 
 
 
 
 
 
 
 
 
 
 
 
 
3044868
7b5e93f
3044868
 
 
 
 
 
 
 
 
 
 
7b5e93f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
---
base_model:
- allura-org/Qwen2.5-32b-RP-Ink
- deepseek-ai/DeepSeek-R1-Distill-Qwen-32B
- Aryanne/QwentileSwap
- Daemontatox/Cogito-Ultima
library_name: transformers
tags:
- mergekit
- merge

---
# Qwetiapin

> There's no 'I' in 'brain damage'

![](https://files.catbox.moe/9k5p1v.png)

### Overview

An attempt to make QwentileSwap write even better by merging it with RP-Ink. And DeepSeek, because why not. However, I screwed up the first merge step by accidentally setting an extremely high epsilon value. Step2 wasn't planned, but due to a wonky tensor size mismatch error, I couldn't merge Step1 into QwentileSwap using sce, so I just threw in some random model. And that did, in fact, solve the issue.

The result? Well, it's usable, I guess. The slop is reduced, more details are brought up, but said details sometimes get messed up. It's fixed by a few swipes and there's a chance that it's caused by my sampler settings, but uhh I'll just leave them as they are.

Prompt format: ChatML

Settings: [This kinda works but I'm weird](https://files.catbox.moe/hmw87j.json)

### Quants

[Static](https://huggingface.co/mradermacher/Q2.5-Qwetiapin-32B-GGUF) | [Imatrix](https://huggingface.co/mradermacher/Q2.5-Qwetiapin-32B-i1-GGUF)

## Merge Details
### Merging Steps

### Step1

```yaml
dtype: bfloat16
tokenizer_source: base
merge_method: della_linear
parameters:
  density: 0.5
  epsilon: 0.4 #was supposed to be 0.04 
  lambda: 1.1
base_model: allura-org/Qwen2.5-32b-RP-Ink
models:
  - model: deepseek-ai/DeepSeek-R1-Distill-Qwen-32B
    parameters:
      weight:
        - filter: v_proj
          value: [0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0]
        - filter: o_proj
          value: [1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1]
        - filter: up_proj
          value: [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
        - filter: gate_proj
          value: [0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0]
        - filter: down_proj
          value: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
        - value: 0
  - model: allura-org/Qwen2.5-32b-RP-Ink
    parameters:
      weight:
        - filter: v_proj
          value: [1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1]
        - filter: o_proj
          value: [0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0]
        - filter: up_proj
          value: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
        - filter: gate_proj
          value: [1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1]
        - filter: down_proj
          value: [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
        - value: 1
```

### Step2

```yaml
models:
  - model: Aryanne/QwentileSwap
    parameters:
      weight: [1.0, 0.9, 0.8, 0.9, 1.0]
  - model: Daemontatox/Cogito-Ultima
    parameters:
      weight: [0, 0.1, 0.2, 0.1, 0]
merge_method: nuslerp
parameters:
  nuslerp_row_wise: true
dtype: bfloat16
tokenizer_source: base
```

### Step3

```yaml
models:
  - model: Step2
  - model: Step1
merge_method: sce
base_model: Step2
parameters:
  select_topk:
    - value: [0.3, 0.35, 0.4, 0.35, 0.2]
dtype: bfloat16
```