--- library_name: peft license: apache-2.0 base_model: Qwen/QwQ-32B tags: - generated_from_trainer datasets: - Mielikki/Erebus-87k - NewEden/Orion-Completion-Asstr-Stories-16K - NewEden/Orion-Completion-LIT model-index: - name: qvq-cum results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.8.0.dev0` ```yaml base_model: Qwen/QwQ-32B model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer plugins: - axolotl.integrations.liger.LigerPlugin liger_rope: true liger_rms_norm: true liger_swiglu: true liger_fused_linear_cross_entropy: true load_in_8bit: false load_in_4bit: false strict: false datasets: - path: Mielikki/Erebus-87k type: completion field: body - path: NewEden/Orion-Completion-Asstr-Stories-16K type: completion field: content - path: NewEden/Orion-Completion-LIT type: completion field: text shuffle_merged_datasets: true dataset_prepared_path: prepared_data output_dir: ./qvq-cum sequence_len: 16384 sample_packing: true pad_to_sequence_len: true adapter: lora lora_model_dir: lora_r: 128 lora_alpha: 16 lora_dropout: 0.05 lora_target_modules: - gate_proj - down_proj - up_proj - q_proj - v_proj - k_proj - o_proj lora_modules_to_save: - embed_tokens - lm_head wandb_project: qwq wandb_entity: wandb_watch: wandb_name: Pretrain-pt1-v2-frfr wandb_log_model: gradient_accumulation_steps: 2 micro_batch_size: 2 num_epochs: 1 optimizer: paged_adamw_8bit lr_scheduler: cosine learning_rate: 1e-5 max_grad_norm: 0.001 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 40 saves_per_epoch: 2 debug: deepspeed: /workspace/axolotl/deepspeed_configs/zero3_bf16.json weight_decay: 0.01 fsdp: fsdp_config: ```

# qvq-cum This model is a fine-tuned version of [Qwen/QwQ-32B](https://huggingface.co/Qwen/QwQ-32B) on the Mielikki/Erebus-87k, the NewEden/Orion-Completion-Asstr-Stories-16K and the NewEden/Orion-Completion-LIT datasets. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - total_eval_batch_size: 8 - optimizer: Use OptimizerNames.PAGED_ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 40 - num_epochs: 1.0 ### Training results ### Framework versions - PEFT 0.14.0 - Transformers 4.49.0 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0