arabert_no_augmentation_organization_task1_fold0

This model is a fine-tuned version of aubmindlab/bert-base-arabertv02 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8071
  • Qwk: 0.7786
  • Mse: 0.8071
  • Rmse: 0.8984

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Qwk Mse Rmse
No log 0.1818 2 4.6091 -0.0084 4.6091 2.1469
No log 0.3636 4 2.7511 0.0000 2.7511 1.6586
No log 0.5455 6 1.9010 -0.1625 1.9010 1.3788
No log 0.7273 8 1.2735 0.0930 1.2735 1.1285
No log 0.9091 10 1.3174 0.2584 1.3174 1.1478
No log 1.0909 12 1.2159 0.3084 1.2159 1.1027
No log 1.2727 14 1.1049 0.3923 1.1049 1.0511
No log 1.4545 16 0.9768 0.4541 0.9768 0.9883
No log 1.6364 18 1.2066 0.4134 1.2066 1.0985
No log 1.8182 20 1.4322 0.4085 1.4322 1.1967
No log 2.0 22 1.4533 0.3831 1.4533 1.2055
No log 2.1818 24 1.2317 0.5312 1.2317 1.1098
No log 2.3636 26 0.9282 0.4561 0.9282 0.9634
No log 2.5455 28 1.0926 0.5222 1.0926 1.0453
No log 2.7273 30 1.0693 0.5222 1.0693 1.0341
No log 2.9091 32 0.9590 0.5088 0.9590 0.9793
No log 3.0909 34 1.1455 0.5288 1.1455 1.0703
No log 3.2727 36 1.3818 0.5073 1.3818 1.1755
No log 3.4545 38 1.3091 0.5073 1.3091 1.1442
No log 3.6364 40 0.9953 0.5288 0.9953 0.9976
No log 3.8182 42 0.7863 0.4938 0.7863 0.8867
No log 4.0 44 0.8394 0.5254 0.8394 0.9162
No log 4.1818 46 0.7831 0.5399 0.7831 0.8849
No log 4.3636 48 0.7361 0.6087 0.7361 0.8580
No log 4.5455 50 1.0454 0.7268 1.0454 1.0224
No log 4.7273 52 1.2795 0.5743 1.2795 1.1312
No log 4.9091 54 1.2229 0.5896 1.2229 1.1058
No log 5.0909 56 1.0233 0.7526 1.0233 1.0116
No log 5.2727 58 0.8234 0.6087 0.8234 0.9074
No log 5.4545 60 0.7794 0.6087 0.7794 0.8828
No log 5.6364 62 0.8013 0.6087 0.8013 0.8952
No log 5.8182 64 0.8913 0.6182 0.8913 0.9441
No log 6.0 66 0.9996 0.6536 0.9996 0.9998
No log 6.1818 68 1.1340 0.6585 1.1340 1.0649
No log 6.3636 70 1.1480 0.6585 1.1480 1.0714
No log 6.5455 72 1.0158 0.7447 1.0158 1.0079
No log 6.7273 74 0.8611 0.6026 0.8611 0.9280
No log 6.9091 76 0.7947 0.6087 0.7947 0.8915
No log 7.0909 78 0.7768 0.6340 0.7768 0.8814
No log 7.2727 80 0.7826 0.5997 0.7826 0.8846
No log 7.4545 82 0.8277 0.7109 0.8277 0.9098
No log 7.6364 84 0.8633 0.7355 0.8633 0.9291
No log 7.8182 86 0.8868 0.7704 0.8868 0.9417
No log 8.0 88 0.9068 0.7704 0.9068 0.9523
No log 8.1818 90 0.9279 0.7704 0.9279 0.9633
No log 8.3636 92 0.8988 0.7955 0.8988 0.9481
No log 8.5455 94 0.8985 0.7955 0.8985 0.9479
No log 8.7273 96 0.8973 0.7955 0.8973 0.9473
No log 8.9091 98 0.8757 0.7955 0.8757 0.9358
No log 9.0909 100 0.8457 0.7955 0.8457 0.9196
No log 9.2727 102 0.8353 0.7786 0.8353 0.9140
No log 9.4545 104 0.8206 0.7786 0.8206 0.9059
No log 9.6364 106 0.8107 0.7786 0.8107 0.9004
No log 9.8182 108 0.8081 0.7786 0.8081 0.8990
No log 10.0 110 0.8071 0.7786 0.8071 0.8984

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0+cu118
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
6
Safetensors
Model size
135M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for MayBashendy/arabert_no_augmentation_organization_task1_fold0

Finetuned
(4222)
this model