arabert_baseline_organization_task1_fold0
This model is a fine-tuned version of aubmindlab/bert-base-arabertv02 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.6571
- Qwk: 0.7618
- Mse: 0.6571
- Rmse: 0.8106
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse |
---|---|---|---|---|---|---|
No log | 0.1818 | 2 | 4.7070 | -0.0581 | 4.7070 | 2.1696 |
No log | 0.3636 | 4 | 2.5400 | 0.0 | 2.5400 | 1.5937 |
No log | 0.5455 | 6 | 1.5937 | 0.1750 | 1.5937 | 1.2624 |
No log | 0.7273 | 8 | 1.0172 | 0.1582 | 1.0172 | 1.0086 |
No log | 0.9091 | 10 | 0.9129 | 0.4929 | 0.9129 | 0.9555 |
No log | 1.0909 | 12 | 0.8654 | 0.4763 | 0.8654 | 0.9302 |
No log | 1.2727 | 14 | 0.8549 | 0.5268 | 0.8549 | 0.9246 |
No log | 1.4545 | 16 | 0.7991 | 0.4934 | 0.7991 | 0.8939 |
No log | 1.6364 | 18 | 0.8510 | 0.5288 | 0.8510 | 0.9225 |
No log | 1.8182 | 20 | 0.8834 | 0.5288 | 0.8834 | 0.9399 |
No log | 2.0 | 22 | 0.9534 | 0.5304 | 0.9534 | 0.9764 |
No log | 2.1818 | 24 | 0.8760 | 0.5698 | 0.8760 | 0.9360 |
No log | 2.3636 | 26 | 0.7263 | 0.6182 | 0.7263 | 0.8522 |
No log | 2.5455 | 28 | 0.7632 | 0.5093 | 0.7632 | 0.8736 |
No log | 2.7273 | 30 | 0.7407 | 0.5845 | 0.7407 | 0.8606 |
No log | 2.9091 | 32 | 0.8857 | 0.5674 | 0.8857 | 0.9411 |
No log | 3.0909 | 34 | 0.9844 | 0.6301 | 0.9844 | 0.9922 |
No log | 3.2727 | 36 | 0.9963 | 0.6301 | 0.9963 | 0.9981 |
No log | 3.4545 | 38 | 0.8665 | 0.6209 | 0.8665 | 0.9308 |
No log | 3.6364 | 40 | 0.7832 | 0.6354 | 0.7832 | 0.8850 |
No log | 3.8182 | 42 | 0.8425 | 0.6715 | 0.8425 | 0.9179 |
No log | 4.0 | 44 | 0.8849 | 0.5591 | 0.8849 | 0.9407 |
No log | 4.1818 | 46 | 0.8290 | 0.5862 | 0.8290 | 0.9105 |
No log | 4.3636 | 48 | 0.7263 | 0.6866 | 0.7263 | 0.8523 |
No log | 4.5455 | 50 | 0.7922 | 0.7786 | 0.7922 | 0.8901 |
No log | 4.7273 | 52 | 0.9204 | 0.7037 | 0.9204 | 0.9594 |
No log | 4.9091 | 54 | 0.8995 | 0.6836 | 0.8995 | 0.9484 |
No log | 5.0909 | 56 | 0.7549 | 0.6968 | 0.7549 | 0.8688 |
No log | 5.2727 | 58 | 0.6694 | 0.6539 | 0.6694 | 0.8182 |
No log | 5.4545 | 60 | 0.6618 | 0.6102 | 0.6618 | 0.8135 |
No log | 5.6364 | 62 | 0.6895 | 0.7449 | 0.6895 | 0.8304 |
No log | 5.8182 | 64 | 0.7854 | 0.7181 | 0.7854 | 0.8863 |
No log | 6.0 | 66 | 0.8328 | 0.7181 | 0.8328 | 0.9126 |
No log | 6.1818 | 68 | 0.8134 | 0.6764 | 0.8134 | 0.9019 |
No log | 6.3636 | 70 | 0.8151 | 0.7363 | 0.8151 | 0.9028 |
No log | 6.5455 | 72 | 0.7853 | 0.7363 | 0.7853 | 0.8862 |
No log | 6.7273 | 74 | 0.7443 | 0.7786 | 0.7443 | 0.8627 |
No log | 6.9091 | 76 | 0.7261 | 0.7618 | 0.7261 | 0.8521 |
No log | 7.0909 | 78 | 0.7315 | 0.7008 | 0.7315 | 0.8553 |
No log | 7.2727 | 80 | 0.7472 | 0.7181 | 0.7472 | 0.8644 |
No log | 7.4545 | 82 | 0.7769 | 0.7181 | 0.7769 | 0.8814 |
No log | 7.6364 | 84 | 0.7755 | 0.6893 | 0.7755 | 0.8807 |
No log | 7.8182 | 86 | 0.7231 | 0.7008 | 0.7231 | 0.8504 |
No log | 8.0 | 88 | 0.6836 | 0.7008 | 0.6836 | 0.8268 |
No log | 8.1818 | 90 | 0.6640 | 0.7618 | 0.6640 | 0.8148 |
No log | 8.3636 | 92 | 0.6503 | 0.7618 | 0.6503 | 0.8064 |
No log | 8.5455 | 94 | 0.6490 | 0.7371 | 0.6490 | 0.8056 |
No log | 8.7273 | 96 | 0.6511 | 0.7618 | 0.6511 | 0.8069 |
No log | 8.9091 | 98 | 0.6544 | 0.7618 | 0.6544 | 0.8090 |
No log | 9.0909 | 100 | 0.6537 | 0.7618 | 0.6537 | 0.8085 |
No log | 9.2727 | 102 | 0.6535 | 0.7618 | 0.6535 | 0.8084 |
No log | 9.4545 | 104 | 0.6564 | 0.7618 | 0.6564 | 0.8102 |
No log | 9.6364 | 106 | 0.6574 | 0.7618 | 0.6574 | 0.8108 |
No log | 9.8182 | 108 | 0.6573 | 0.7618 | 0.6573 | 0.8107 |
No log | 10.0 | 110 | 0.6571 | 0.7618 | 0.6571 | 0.8106 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.0+cu118
- Datasets 2.21.0
- Tokenizers 0.19.1
- Downloads last month
- 194
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for MayBashendy/arabert_baseline_organization_task1_fold0
Base model
aubmindlab/bert-base-arabertv02