Arabic_FineTuningAraBERT_AugV4_k1_task1_organization_fold0

This model is a fine-tuned version of aubmindlab/bert-base-arabertv02 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5916
  • Qwk: 0.8232
  • Mse: 0.5916
  • Rmse: 0.7692

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Qwk Mse Rmse
No log 0.0667 2 4.5600 -0.0258 4.5600 2.1354
No log 0.1333 4 3.1700 0.0546 3.1700 1.7805
No log 0.2 6 2.1798 0.0106 2.1798 1.4764
No log 0.2667 8 1.9763 -0.1710 1.9763 1.4058
No log 0.3333 10 2.2405 -0.2719 2.2405 1.4968
No log 0.4 12 1.6954 0.3209 1.6954 1.3021
No log 0.4667 14 1.1480 0.4044 1.1480 1.0715
No log 0.5333 16 1.0376 0.4603 1.0376 1.0186
No log 0.6 18 1.0373 0.4842 1.0373 1.0185
No log 0.6667 20 1.2897 0.4085 1.2897 1.1356
No log 0.7333 22 1.9307 0.2145 1.9307 1.3895
No log 0.8 24 1.9972 0.1600 1.9972 1.4132
No log 0.8667 26 1.8958 0.1600 1.8958 1.3769
No log 0.9333 28 1.5584 0.1163 1.5584 1.2484
No log 1.0 30 1.2713 0.4364 1.2713 1.1275
No log 1.0667 32 1.0851 0.3888 1.0851 1.0417
No log 1.1333 34 0.9924 0.4661 0.9924 0.9962
No log 1.2 36 0.9015 0.5295 0.9015 0.9495
No log 1.2667 38 0.8696 0.5295 0.8696 0.9325
No log 1.3333 40 0.8713 0.6169 0.8713 0.9334
No log 1.4 42 0.9382 0.6209 0.9382 0.9686
No log 1.4667 44 0.8959 0.6769 0.8959 0.9465
No log 1.5333 46 0.8052 0.5734 0.8052 0.8973
No log 1.6 48 0.8738 0.6829 0.8738 0.9347
No log 1.6667 50 0.8138 0.6829 0.8138 0.9021
No log 1.7333 52 0.6880 0.5876 0.6880 0.8294
No log 1.8 54 0.7091 0.6015 0.7091 0.8421
No log 1.8667 56 0.6546 0.6462 0.6546 0.8091
No log 1.9333 58 0.8143 0.6396 0.8143 0.9024
No log 2.0 60 1.0264 0.6576 1.0264 1.0131
No log 2.0667 62 0.9528 0.7172 0.9528 0.9761
No log 2.1333 64 0.7988 0.6875 0.7988 0.8938
No log 2.2 66 0.7390 0.7091 0.7390 0.8596
No log 2.2667 68 0.7324 0.7091 0.7324 0.8558
No log 2.3333 70 0.7081 0.7091 0.7081 0.8415
No log 2.4 72 0.6661 0.7177 0.6661 0.8162
No log 2.4667 74 0.7701 0.7522 0.7701 0.8775
No log 2.5333 76 0.7781 0.7601 0.7781 0.8821
No log 2.6 78 0.9388 0.7518 0.9388 0.9689
No log 2.6667 80 0.9064 0.7601 0.9064 0.9520
No log 2.7333 82 0.7554 0.7443 0.7554 0.8691
No log 2.8 84 0.6464 0.7447 0.6464 0.8040
No log 2.8667 86 0.5659 0.7282 0.5659 0.7522
No log 2.9333 88 0.6412 0.7955 0.6412 0.8008
No log 3.0 90 0.6628 0.8123 0.6628 0.8141
No log 3.0667 92 0.7536 0.7601 0.7536 0.8681
No log 3.1333 94 0.7426 0.7522 0.7426 0.8618
No log 3.2 96 0.6970 0.7 0.6970 0.8348
No log 3.2667 98 0.7009 0.7060 0.7009 0.8372
No log 3.3333 100 0.7877 0.7601 0.7877 0.8875
No log 3.4 102 0.8167 0.7354 0.8167 0.9037
No log 3.4667 104 0.6953 0.7779 0.6953 0.8338
No log 3.5333 106 0.5571 0.7529 0.5571 0.7464
No log 3.6 108 0.5783 0.7529 0.5783 0.7605
No log 3.6667 110 0.6764 0.7875 0.6764 0.8224
No log 3.7333 112 0.6860 0.8019 0.6860 0.8282
No log 3.8 114 0.7552 0.7875 0.7552 0.8690
No log 3.8667 116 0.6171 0.7064 0.6171 0.7856
No log 3.9333 118 0.6041 0.7132 0.6041 0.7773
No log 4.0 120 0.6846 0.8019 0.6846 0.8274
No log 4.0667 122 0.8722 0.7607 0.8722 0.9339
No log 4.1333 124 0.8171 0.7941 0.8171 0.9039
No log 4.2 126 0.5920 0.8022 0.5920 0.7694
No log 4.2667 128 0.5470 0.7277 0.5470 0.7396
No log 4.3333 130 0.5655 0.7382 0.5655 0.7520
No log 4.4 132 0.7368 0.7811 0.7368 0.8584
No log 4.4667 134 0.7864 0.7811 0.7864 0.8868
No log 4.5333 136 0.8216 0.7894 0.8216 0.9064
No log 4.6 138 0.7380 0.7811 0.7380 0.8591
No log 4.6667 140 0.6386 0.7526 0.6386 0.7991
No log 4.7333 142 0.6698 0.7689 0.6698 0.8184
No log 4.8 144 0.6025 0.7526 0.6025 0.7762
No log 4.8667 146 0.5483 0.7739 0.5483 0.7405
No log 4.9333 148 0.5418 0.7739 0.5418 0.7361
No log 5.0 150 0.5547 0.7739 0.5547 0.7448
No log 5.0667 152 0.6242 0.7689 0.6242 0.7901
No log 5.1333 154 0.6029 0.7924 0.6029 0.7765
No log 5.2 156 0.5723 0.7752 0.5723 0.7565
No log 5.2667 158 0.6118 0.8019 0.6118 0.7822
No log 5.3333 160 0.6356 0.8019 0.6356 0.7972
No log 5.4 162 0.6635 0.8019 0.6635 0.8145
No log 5.4667 164 0.5638 0.8019 0.5638 0.7508
No log 5.5333 166 0.5212 0.7603 0.5212 0.7219
No log 5.6 168 0.5127 0.7752 0.5127 0.7160
No log 5.6667 170 0.4815 0.7073 0.4815 0.6939
No log 5.7333 172 0.4983 0.7752 0.4983 0.7059
No log 5.8 174 0.6508 0.7875 0.6508 0.8067
No log 5.8667 176 0.8775 0.7607 0.8775 0.9367
No log 5.9333 178 1.0677 0.6934 1.0677 1.0333
No log 6.0 180 0.9886 0.6934 0.9886 0.9943
No log 6.0667 182 0.7427 0.8215 0.7427 0.8618
No log 6.1333 184 0.5546 0.8098 0.5546 0.7447
No log 6.2 186 0.4927 0.8060 0.4927 0.7019
No log 6.2667 188 0.5016 0.8060 0.5016 0.7082
No log 6.3333 190 0.5853 0.8098 0.5853 0.7651
No log 6.4 192 0.7791 0.8047 0.7791 0.8827
No log 6.4667 194 0.8691 0.8047 0.8691 0.9322
No log 6.5333 196 0.7710 0.7945 0.7710 0.8781
No log 6.6 198 0.6184 0.8079 0.6184 0.7864
No log 6.6667 200 0.5553 0.8105 0.5553 0.7452
No log 6.7333 202 0.6060 0.8079 0.6060 0.7784
No log 6.8 204 0.7222 0.8079 0.7222 0.8498
No log 6.8667 206 0.8430 0.7849 0.8430 0.9181
No log 6.9333 208 0.7805 0.8079 0.7805 0.8835
No log 7.0 210 0.6049 0.8079 0.6049 0.7778
No log 7.0667 212 0.5382 0.8022 0.5382 0.7336
No log 7.1333 214 0.5740 0.7985 0.5740 0.7577
No log 7.2 216 0.6530 0.8079 0.6530 0.8081
No log 7.2667 218 0.6055 0.7985 0.6055 0.7782
No log 7.3333 220 0.6070 0.7689 0.6070 0.7791
No log 7.4 222 0.6170 0.8079 0.6170 0.7855
No log 7.4667 224 0.6024 0.7779 0.6024 0.7761
No log 7.5333 226 0.6029 0.8232 0.6029 0.7765
No log 7.6 228 0.5856 0.8232 0.5856 0.7652
No log 7.6667 230 0.5914 0.8232 0.5914 0.7690
No log 7.7333 232 0.6357 0.7779 0.6357 0.7973
No log 7.8 234 0.6937 0.7779 0.6937 0.8329
No log 7.8667 236 0.7551 0.7982 0.7551 0.8690
No log 7.9333 238 0.8079 0.7982 0.8079 0.8988
No log 8.0 240 0.7878 0.7982 0.7878 0.8876
No log 8.0667 242 0.7225 0.7685 0.7225 0.8500
No log 8.1333 244 0.6565 0.7779 0.6565 0.8102
No log 8.2 246 0.6696 0.7779 0.6696 0.8183
No log 8.2667 248 0.6647 0.7779 0.6647 0.8153
No log 8.3333 250 0.6385 0.7779 0.6385 0.7991
No log 8.4 252 0.5867 0.7779 0.5867 0.7660
No log 8.4667 254 0.5501 0.8123 0.5501 0.7417
No log 8.5333 256 0.5540 0.8232 0.5540 0.7443
No log 8.6 258 0.5823 0.7779 0.5823 0.7631
No log 8.6667 260 0.6369 0.7779 0.6369 0.7981
No log 8.7333 262 0.6956 0.7779 0.6956 0.8340
No log 8.8 264 0.7769 0.8076 0.7769 0.8814
No log 8.8667 266 0.8041 0.7845 0.8041 0.8967
No log 8.9333 268 0.8230 0.7845 0.8230 0.9072
No log 9.0 270 0.7819 0.8076 0.7819 0.8842
No log 9.0667 272 0.7074 0.8180 0.7074 0.8411
No log 9.1333 274 0.6318 0.8232 0.6318 0.7949
No log 9.2 276 0.5712 0.8232 0.5712 0.7558
No log 9.2667 278 0.5315 0.8352 0.5315 0.7291
No log 9.3333 280 0.5248 0.8352 0.5248 0.7244
No log 9.4 282 0.5308 0.8352 0.5308 0.7286
No log 9.4667 284 0.5415 0.8352 0.5415 0.7359
No log 9.5333 286 0.5513 0.8465 0.5513 0.7425
No log 9.6 288 0.5653 0.8465 0.5653 0.7519
No log 9.6667 290 0.5766 0.8232 0.5766 0.7594
No log 9.7333 292 0.5763 0.8232 0.5763 0.7592
No log 9.8 294 0.5783 0.8232 0.5783 0.7605
No log 9.8667 296 0.5843 0.8232 0.5843 0.7644
No log 9.9333 298 0.5903 0.8232 0.5903 0.7683
No log 10.0 300 0.5916 0.8232 0.5916 0.7692

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0+cu118
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
5
Safetensors
Model size
135M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for MayBashendy/Arabic_FineTuningAraBERT_AugV4_k1_task1_organization_fold0

Finetuned
(4222)
this model