Arabic_FineTuningAraBERT_AugV4_k1_task1_organization_fold0
This model is a fine-tuned version of aubmindlab/bert-base-arabertv02 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.5916
- Qwk: 0.8232
- Mse: 0.5916
- Rmse: 0.7692
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse |
---|---|---|---|---|---|---|
No log | 0.0667 | 2 | 4.5600 | -0.0258 | 4.5600 | 2.1354 |
No log | 0.1333 | 4 | 3.1700 | 0.0546 | 3.1700 | 1.7805 |
No log | 0.2 | 6 | 2.1798 | 0.0106 | 2.1798 | 1.4764 |
No log | 0.2667 | 8 | 1.9763 | -0.1710 | 1.9763 | 1.4058 |
No log | 0.3333 | 10 | 2.2405 | -0.2719 | 2.2405 | 1.4968 |
No log | 0.4 | 12 | 1.6954 | 0.3209 | 1.6954 | 1.3021 |
No log | 0.4667 | 14 | 1.1480 | 0.4044 | 1.1480 | 1.0715 |
No log | 0.5333 | 16 | 1.0376 | 0.4603 | 1.0376 | 1.0186 |
No log | 0.6 | 18 | 1.0373 | 0.4842 | 1.0373 | 1.0185 |
No log | 0.6667 | 20 | 1.2897 | 0.4085 | 1.2897 | 1.1356 |
No log | 0.7333 | 22 | 1.9307 | 0.2145 | 1.9307 | 1.3895 |
No log | 0.8 | 24 | 1.9972 | 0.1600 | 1.9972 | 1.4132 |
No log | 0.8667 | 26 | 1.8958 | 0.1600 | 1.8958 | 1.3769 |
No log | 0.9333 | 28 | 1.5584 | 0.1163 | 1.5584 | 1.2484 |
No log | 1.0 | 30 | 1.2713 | 0.4364 | 1.2713 | 1.1275 |
No log | 1.0667 | 32 | 1.0851 | 0.3888 | 1.0851 | 1.0417 |
No log | 1.1333 | 34 | 0.9924 | 0.4661 | 0.9924 | 0.9962 |
No log | 1.2 | 36 | 0.9015 | 0.5295 | 0.9015 | 0.9495 |
No log | 1.2667 | 38 | 0.8696 | 0.5295 | 0.8696 | 0.9325 |
No log | 1.3333 | 40 | 0.8713 | 0.6169 | 0.8713 | 0.9334 |
No log | 1.4 | 42 | 0.9382 | 0.6209 | 0.9382 | 0.9686 |
No log | 1.4667 | 44 | 0.8959 | 0.6769 | 0.8959 | 0.9465 |
No log | 1.5333 | 46 | 0.8052 | 0.5734 | 0.8052 | 0.8973 |
No log | 1.6 | 48 | 0.8738 | 0.6829 | 0.8738 | 0.9347 |
No log | 1.6667 | 50 | 0.8138 | 0.6829 | 0.8138 | 0.9021 |
No log | 1.7333 | 52 | 0.6880 | 0.5876 | 0.6880 | 0.8294 |
No log | 1.8 | 54 | 0.7091 | 0.6015 | 0.7091 | 0.8421 |
No log | 1.8667 | 56 | 0.6546 | 0.6462 | 0.6546 | 0.8091 |
No log | 1.9333 | 58 | 0.8143 | 0.6396 | 0.8143 | 0.9024 |
No log | 2.0 | 60 | 1.0264 | 0.6576 | 1.0264 | 1.0131 |
No log | 2.0667 | 62 | 0.9528 | 0.7172 | 0.9528 | 0.9761 |
No log | 2.1333 | 64 | 0.7988 | 0.6875 | 0.7988 | 0.8938 |
No log | 2.2 | 66 | 0.7390 | 0.7091 | 0.7390 | 0.8596 |
No log | 2.2667 | 68 | 0.7324 | 0.7091 | 0.7324 | 0.8558 |
No log | 2.3333 | 70 | 0.7081 | 0.7091 | 0.7081 | 0.8415 |
No log | 2.4 | 72 | 0.6661 | 0.7177 | 0.6661 | 0.8162 |
No log | 2.4667 | 74 | 0.7701 | 0.7522 | 0.7701 | 0.8775 |
No log | 2.5333 | 76 | 0.7781 | 0.7601 | 0.7781 | 0.8821 |
No log | 2.6 | 78 | 0.9388 | 0.7518 | 0.9388 | 0.9689 |
No log | 2.6667 | 80 | 0.9064 | 0.7601 | 0.9064 | 0.9520 |
No log | 2.7333 | 82 | 0.7554 | 0.7443 | 0.7554 | 0.8691 |
No log | 2.8 | 84 | 0.6464 | 0.7447 | 0.6464 | 0.8040 |
No log | 2.8667 | 86 | 0.5659 | 0.7282 | 0.5659 | 0.7522 |
No log | 2.9333 | 88 | 0.6412 | 0.7955 | 0.6412 | 0.8008 |
No log | 3.0 | 90 | 0.6628 | 0.8123 | 0.6628 | 0.8141 |
No log | 3.0667 | 92 | 0.7536 | 0.7601 | 0.7536 | 0.8681 |
No log | 3.1333 | 94 | 0.7426 | 0.7522 | 0.7426 | 0.8618 |
No log | 3.2 | 96 | 0.6970 | 0.7 | 0.6970 | 0.8348 |
No log | 3.2667 | 98 | 0.7009 | 0.7060 | 0.7009 | 0.8372 |
No log | 3.3333 | 100 | 0.7877 | 0.7601 | 0.7877 | 0.8875 |
No log | 3.4 | 102 | 0.8167 | 0.7354 | 0.8167 | 0.9037 |
No log | 3.4667 | 104 | 0.6953 | 0.7779 | 0.6953 | 0.8338 |
No log | 3.5333 | 106 | 0.5571 | 0.7529 | 0.5571 | 0.7464 |
No log | 3.6 | 108 | 0.5783 | 0.7529 | 0.5783 | 0.7605 |
No log | 3.6667 | 110 | 0.6764 | 0.7875 | 0.6764 | 0.8224 |
No log | 3.7333 | 112 | 0.6860 | 0.8019 | 0.6860 | 0.8282 |
No log | 3.8 | 114 | 0.7552 | 0.7875 | 0.7552 | 0.8690 |
No log | 3.8667 | 116 | 0.6171 | 0.7064 | 0.6171 | 0.7856 |
No log | 3.9333 | 118 | 0.6041 | 0.7132 | 0.6041 | 0.7773 |
No log | 4.0 | 120 | 0.6846 | 0.8019 | 0.6846 | 0.8274 |
No log | 4.0667 | 122 | 0.8722 | 0.7607 | 0.8722 | 0.9339 |
No log | 4.1333 | 124 | 0.8171 | 0.7941 | 0.8171 | 0.9039 |
No log | 4.2 | 126 | 0.5920 | 0.8022 | 0.5920 | 0.7694 |
No log | 4.2667 | 128 | 0.5470 | 0.7277 | 0.5470 | 0.7396 |
No log | 4.3333 | 130 | 0.5655 | 0.7382 | 0.5655 | 0.7520 |
No log | 4.4 | 132 | 0.7368 | 0.7811 | 0.7368 | 0.8584 |
No log | 4.4667 | 134 | 0.7864 | 0.7811 | 0.7864 | 0.8868 |
No log | 4.5333 | 136 | 0.8216 | 0.7894 | 0.8216 | 0.9064 |
No log | 4.6 | 138 | 0.7380 | 0.7811 | 0.7380 | 0.8591 |
No log | 4.6667 | 140 | 0.6386 | 0.7526 | 0.6386 | 0.7991 |
No log | 4.7333 | 142 | 0.6698 | 0.7689 | 0.6698 | 0.8184 |
No log | 4.8 | 144 | 0.6025 | 0.7526 | 0.6025 | 0.7762 |
No log | 4.8667 | 146 | 0.5483 | 0.7739 | 0.5483 | 0.7405 |
No log | 4.9333 | 148 | 0.5418 | 0.7739 | 0.5418 | 0.7361 |
No log | 5.0 | 150 | 0.5547 | 0.7739 | 0.5547 | 0.7448 |
No log | 5.0667 | 152 | 0.6242 | 0.7689 | 0.6242 | 0.7901 |
No log | 5.1333 | 154 | 0.6029 | 0.7924 | 0.6029 | 0.7765 |
No log | 5.2 | 156 | 0.5723 | 0.7752 | 0.5723 | 0.7565 |
No log | 5.2667 | 158 | 0.6118 | 0.8019 | 0.6118 | 0.7822 |
No log | 5.3333 | 160 | 0.6356 | 0.8019 | 0.6356 | 0.7972 |
No log | 5.4 | 162 | 0.6635 | 0.8019 | 0.6635 | 0.8145 |
No log | 5.4667 | 164 | 0.5638 | 0.8019 | 0.5638 | 0.7508 |
No log | 5.5333 | 166 | 0.5212 | 0.7603 | 0.5212 | 0.7219 |
No log | 5.6 | 168 | 0.5127 | 0.7752 | 0.5127 | 0.7160 |
No log | 5.6667 | 170 | 0.4815 | 0.7073 | 0.4815 | 0.6939 |
No log | 5.7333 | 172 | 0.4983 | 0.7752 | 0.4983 | 0.7059 |
No log | 5.8 | 174 | 0.6508 | 0.7875 | 0.6508 | 0.8067 |
No log | 5.8667 | 176 | 0.8775 | 0.7607 | 0.8775 | 0.9367 |
No log | 5.9333 | 178 | 1.0677 | 0.6934 | 1.0677 | 1.0333 |
No log | 6.0 | 180 | 0.9886 | 0.6934 | 0.9886 | 0.9943 |
No log | 6.0667 | 182 | 0.7427 | 0.8215 | 0.7427 | 0.8618 |
No log | 6.1333 | 184 | 0.5546 | 0.8098 | 0.5546 | 0.7447 |
No log | 6.2 | 186 | 0.4927 | 0.8060 | 0.4927 | 0.7019 |
No log | 6.2667 | 188 | 0.5016 | 0.8060 | 0.5016 | 0.7082 |
No log | 6.3333 | 190 | 0.5853 | 0.8098 | 0.5853 | 0.7651 |
No log | 6.4 | 192 | 0.7791 | 0.8047 | 0.7791 | 0.8827 |
No log | 6.4667 | 194 | 0.8691 | 0.8047 | 0.8691 | 0.9322 |
No log | 6.5333 | 196 | 0.7710 | 0.7945 | 0.7710 | 0.8781 |
No log | 6.6 | 198 | 0.6184 | 0.8079 | 0.6184 | 0.7864 |
No log | 6.6667 | 200 | 0.5553 | 0.8105 | 0.5553 | 0.7452 |
No log | 6.7333 | 202 | 0.6060 | 0.8079 | 0.6060 | 0.7784 |
No log | 6.8 | 204 | 0.7222 | 0.8079 | 0.7222 | 0.8498 |
No log | 6.8667 | 206 | 0.8430 | 0.7849 | 0.8430 | 0.9181 |
No log | 6.9333 | 208 | 0.7805 | 0.8079 | 0.7805 | 0.8835 |
No log | 7.0 | 210 | 0.6049 | 0.8079 | 0.6049 | 0.7778 |
No log | 7.0667 | 212 | 0.5382 | 0.8022 | 0.5382 | 0.7336 |
No log | 7.1333 | 214 | 0.5740 | 0.7985 | 0.5740 | 0.7577 |
No log | 7.2 | 216 | 0.6530 | 0.8079 | 0.6530 | 0.8081 |
No log | 7.2667 | 218 | 0.6055 | 0.7985 | 0.6055 | 0.7782 |
No log | 7.3333 | 220 | 0.6070 | 0.7689 | 0.6070 | 0.7791 |
No log | 7.4 | 222 | 0.6170 | 0.8079 | 0.6170 | 0.7855 |
No log | 7.4667 | 224 | 0.6024 | 0.7779 | 0.6024 | 0.7761 |
No log | 7.5333 | 226 | 0.6029 | 0.8232 | 0.6029 | 0.7765 |
No log | 7.6 | 228 | 0.5856 | 0.8232 | 0.5856 | 0.7652 |
No log | 7.6667 | 230 | 0.5914 | 0.8232 | 0.5914 | 0.7690 |
No log | 7.7333 | 232 | 0.6357 | 0.7779 | 0.6357 | 0.7973 |
No log | 7.8 | 234 | 0.6937 | 0.7779 | 0.6937 | 0.8329 |
No log | 7.8667 | 236 | 0.7551 | 0.7982 | 0.7551 | 0.8690 |
No log | 7.9333 | 238 | 0.8079 | 0.7982 | 0.8079 | 0.8988 |
No log | 8.0 | 240 | 0.7878 | 0.7982 | 0.7878 | 0.8876 |
No log | 8.0667 | 242 | 0.7225 | 0.7685 | 0.7225 | 0.8500 |
No log | 8.1333 | 244 | 0.6565 | 0.7779 | 0.6565 | 0.8102 |
No log | 8.2 | 246 | 0.6696 | 0.7779 | 0.6696 | 0.8183 |
No log | 8.2667 | 248 | 0.6647 | 0.7779 | 0.6647 | 0.8153 |
No log | 8.3333 | 250 | 0.6385 | 0.7779 | 0.6385 | 0.7991 |
No log | 8.4 | 252 | 0.5867 | 0.7779 | 0.5867 | 0.7660 |
No log | 8.4667 | 254 | 0.5501 | 0.8123 | 0.5501 | 0.7417 |
No log | 8.5333 | 256 | 0.5540 | 0.8232 | 0.5540 | 0.7443 |
No log | 8.6 | 258 | 0.5823 | 0.7779 | 0.5823 | 0.7631 |
No log | 8.6667 | 260 | 0.6369 | 0.7779 | 0.6369 | 0.7981 |
No log | 8.7333 | 262 | 0.6956 | 0.7779 | 0.6956 | 0.8340 |
No log | 8.8 | 264 | 0.7769 | 0.8076 | 0.7769 | 0.8814 |
No log | 8.8667 | 266 | 0.8041 | 0.7845 | 0.8041 | 0.8967 |
No log | 8.9333 | 268 | 0.8230 | 0.7845 | 0.8230 | 0.9072 |
No log | 9.0 | 270 | 0.7819 | 0.8076 | 0.7819 | 0.8842 |
No log | 9.0667 | 272 | 0.7074 | 0.8180 | 0.7074 | 0.8411 |
No log | 9.1333 | 274 | 0.6318 | 0.8232 | 0.6318 | 0.7949 |
No log | 9.2 | 276 | 0.5712 | 0.8232 | 0.5712 | 0.7558 |
No log | 9.2667 | 278 | 0.5315 | 0.8352 | 0.5315 | 0.7291 |
No log | 9.3333 | 280 | 0.5248 | 0.8352 | 0.5248 | 0.7244 |
No log | 9.4 | 282 | 0.5308 | 0.8352 | 0.5308 | 0.7286 |
No log | 9.4667 | 284 | 0.5415 | 0.8352 | 0.5415 | 0.7359 |
No log | 9.5333 | 286 | 0.5513 | 0.8465 | 0.5513 | 0.7425 |
No log | 9.6 | 288 | 0.5653 | 0.8465 | 0.5653 | 0.7519 |
No log | 9.6667 | 290 | 0.5766 | 0.8232 | 0.5766 | 0.7594 |
No log | 9.7333 | 292 | 0.5763 | 0.8232 | 0.5763 | 0.7592 |
No log | 9.8 | 294 | 0.5783 | 0.8232 | 0.5783 | 0.7605 |
No log | 9.8667 | 296 | 0.5843 | 0.8232 | 0.5843 | 0.7644 |
No log | 9.9333 | 298 | 0.5903 | 0.8232 | 0.5903 | 0.7683 |
No log | 10.0 | 300 | 0.5916 | 0.8232 | 0.5916 | 0.7692 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.0+cu118
- Datasets 2.21.0
- Tokenizers 0.19.1
- Downloads last month
- 5
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for MayBashendy/Arabic_FineTuningAraBERT_AugV4_k1_task1_organization_fold0
Base model
aubmindlab/bert-base-arabertv02