Arabic_FineTuningAraBERT_AugV4-trial2_k2_task1_organization_fold0

This model is a fine-tuned version of aubmindlab/bert-base-arabertv02 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7593
  • Qwk: 0.8399
  • Mse: 0.7593
  • Rmse: 0.8714

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Qwk Mse Rmse
No log 0.0408 2 5.1483 0.0 5.1483 2.2690
No log 0.0816 4 2.5989 0.1038 2.5989 1.6121
No log 0.1224 6 1.6050 0.1761 1.6050 1.2669
No log 0.1633 8 1.3209 0.0742 1.3209 1.1493
No log 0.2041 10 1.1858 0.3974 1.1858 1.0889
No log 0.2449 12 1.2925 0.3196 1.2925 1.1369
No log 0.2857 14 1.6404 0.2668 1.6404 1.2808
No log 0.3265 16 1.5991 0.2668 1.5991 1.2646
No log 0.3673 18 1.3199 0.2937 1.3199 1.1489
No log 0.4082 20 1.3281 0.3636 1.3281 1.1524
No log 0.4490 22 1.4681 0.2793 1.4681 1.2117
No log 0.4898 24 1.3821 0.2793 1.3821 1.1756
No log 0.5306 26 1.2677 0.4154 1.2677 1.1259
No log 0.5714 28 1.1544 0.3771 1.1544 1.0744
No log 0.6122 30 1.3331 0.1470 1.3331 1.1546
No log 0.6531 32 1.1393 0.3340 1.1393 1.0674
No log 0.6939 34 1.0781 0.5706 1.0781 1.0383
No log 0.7347 36 1.2072 0.6769 1.2072 1.0987
No log 0.7755 38 1.3687 0.5464 1.3687 1.1699
No log 0.8163 40 1.3199 0.5022 1.3199 1.1489
No log 0.8571 42 1.0536 0.4627 1.0536 1.0264
No log 0.8980 44 0.9659 0.4650 0.9659 0.9828
No log 0.9388 46 0.8693 0.5305 0.8693 0.9324
No log 0.9796 48 0.8420 0.4898 0.8420 0.9176
No log 1.0204 50 0.7725 0.6461 0.7725 0.8789
No log 1.0612 52 0.8608 0.6706 0.8608 0.9278
No log 1.1020 54 0.9833 0.7239 0.9833 0.9916
No log 1.1429 56 0.9801 0.7793 0.9801 0.9900
No log 1.1837 58 0.9036 0.7031 0.9036 0.9506
No log 1.2245 60 1.0702 0.6757 1.0702 1.0345
No log 1.2653 62 0.9406 0.7945 0.9406 0.9698
No log 1.3061 64 0.7740 0.7437 0.7740 0.8797
No log 1.3469 66 0.6667 0.6774 0.6667 0.8165
No log 1.3878 68 0.6999 0.7367 0.6999 0.8366
No log 1.4286 70 0.7029 0.7367 0.7029 0.8384
No log 1.4694 72 0.6395 0.6724 0.6395 0.7997
No log 1.5102 74 0.6346 0.6724 0.6346 0.7966
No log 1.5510 76 0.7813 0.7439 0.7813 0.8839
No log 1.5918 78 1.0305 0.7429 1.0305 1.0151
No log 1.6327 80 1.1366 0.6866 1.1366 1.0661
No log 1.6735 82 0.9354 0.7239 0.9354 0.9671
No log 1.7143 84 0.8243 0.6830 0.8243 0.9079
No log 1.7551 86 0.7621 0.6909 0.7621 0.8730
No log 1.7959 88 0.6988 0.7801 0.6988 0.8359
No log 1.8367 90 0.7048 0.7801 0.7048 0.8395
No log 1.8776 92 0.7672 0.7212 0.7672 0.8759
No log 1.9184 94 0.9315 0.7144 0.9315 0.9651
No log 1.9592 96 0.9274 0.6887 0.9274 0.9630
No log 2.0 98 0.8473 0.7193 0.8473 0.9205
No log 2.0408 100 0.7405 0.7602 0.7405 0.8605
No log 2.0816 102 0.7057 0.7602 0.7057 0.8400
No log 2.1224 104 0.7687 0.7148 0.7687 0.8768
No log 2.1633 106 0.9343 0.7187 0.9343 0.9666
No log 2.2041 108 0.9978 0.7681 0.9978 0.9989
No log 2.2449 110 0.8627 0.8229 0.8627 0.9288
No log 2.2857 112 0.6425 0.7529 0.6425 0.8016
No log 2.3265 114 0.5727 0.6461 0.5727 0.7568
No log 2.3673 116 0.5677 0.6461 0.5677 0.7535
No log 2.4082 118 0.6264 0.7529 0.6264 0.7915
No log 2.4490 120 0.9144 0.7945 0.9144 0.9562
No log 2.4898 122 1.2984 0.6621 1.2984 1.1395
No log 2.5306 124 1.1948 0.6621 1.1948 1.0931
No log 2.5714 126 0.8641 0.7612 0.8641 0.9296
No log 2.6122 128 0.6303 0.7614 0.6303 0.7939
No log 2.6531 130 0.6171 0.7614 0.6171 0.7855
No log 2.6939 132 0.6906 0.7801 0.6906 0.8310
No log 2.7347 134 0.8665 0.7875 0.8665 0.9308
No log 2.7755 136 0.8984 0.7264 0.8984 0.9479
No log 2.8163 138 0.7178 0.7708 0.7178 0.8472
No log 2.8571 140 0.6295 0.6834 0.6295 0.7934
No log 2.8980 142 0.6608 0.6316 0.6608 0.8129
No log 2.9388 144 0.6923 0.6396 0.6923 0.8321
No log 2.9796 146 0.7139 0.6075 0.7139 0.8449
No log 3.0204 148 0.6174 0.6316 0.6174 0.7858
No log 3.0612 150 0.7764 0.8465 0.7764 0.8811
No log 3.1020 152 1.1692 0.6351 1.1692 1.0813
No log 3.1429 154 1.1962 0.6051 1.1962 1.0937
No log 3.1837 156 1.0779 0.7431 1.0779 1.0382
No log 3.2245 158 0.8690 0.7875 0.8690 0.9322
No log 3.2653 160 0.6561 0.7258 0.6561 0.8100
No log 3.3061 162 0.5935 0.7186 0.5935 0.7704
No log 3.3469 164 0.5790 0.7449 0.5790 0.7609
No log 3.3878 166 0.6582 0.7955 0.6582 0.8113
No log 3.4286 168 0.9280 0.7681 0.9280 0.9633
No log 3.4694 170 1.1306 0.7354 1.1306 1.0633
No log 3.5102 172 1.0807 0.7354 1.0807 1.0395
No log 3.5510 174 0.8626 0.7779 0.8626 0.9288
No log 3.5918 176 0.6296 0.7769 0.6296 0.7935
No log 3.6327 178 0.5742 0.7841 0.5742 0.7578
No log 3.6735 180 0.5758 0.7769 0.5758 0.7588
No log 3.7143 182 0.6392 0.7955 0.6392 0.7995
No log 3.7551 184 0.8501 0.8019 0.8501 0.9220
No log 3.7959 186 1.0610 0.7354 1.0610 1.0300
No log 3.8367 188 1.0504 0.7354 1.0504 1.0249
No log 3.8776 190 0.8675 0.7948 0.8675 0.9314
No log 3.9184 192 0.7579 0.7526 0.7579 0.8706
No log 3.9592 194 0.7299 0.7526 0.7299 0.8543
No log 4.0 196 0.6885 0.7955 0.6885 0.8297
No log 4.0408 198 0.6697 0.7526 0.6697 0.8184
No log 4.0816 200 0.7111 0.7526 0.7111 0.8433
No log 4.1224 202 0.7202 0.7526 0.7202 0.8486
No log 4.1633 204 0.7634 0.7921 0.7634 0.8737
No log 4.2041 206 0.7380 0.8019 0.7380 0.8590
No log 4.2449 208 0.6763 0.7955 0.6763 0.8224
No log 4.2857 210 0.5510 0.7773 0.5510 0.7423
No log 4.3265 212 0.5256 0.7689 0.5256 0.7250
No log 4.3673 214 0.5191 0.7773 0.5191 0.7205
No log 4.4082 216 0.5846 0.7786 0.5846 0.7646
No log 4.4490 218 0.7970 0.7521 0.7970 0.8928
No log 4.4898 220 0.9025 0.7793 0.9025 0.9500
No log 4.5306 222 0.8087 0.7612 0.8087 0.8993
No log 4.5714 224 0.6990 0.8232 0.6990 0.8361
No log 4.6122 226 0.6399 0.8123 0.6399 0.8000
No log 4.6531 228 0.6098 0.7859 0.6098 0.7809
No log 4.6939 230 0.6756 0.8232 0.6756 0.8220
No log 4.7347 232 0.7156 0.8349 0.7156 0.8460
No log 4.7755 234 0.8363 0.7612 0.8363 0.9145
No log 4.8163 236 0.9588 0.7752 0.9588 0.9792
No log 4.8571 238 0.9015 0.7982 0.9015 0.9495
No log 4.8980 240 0.7200 0.7832 0.7200 0.8485
No log 4.9388 242 0.6329 0.8144 0.6329 0.7955
No log 4.9796 244 0.6539 0.8144 0.6539 0.8086
No log 5.0204 246 0.6983 0.7832 0.6983 0.8356
No log 5.0612 248 0.6967 0.8243 0.6967 0.8347
No log 5.1020 250 0.6793 0.8243 0.6793 0.8242
No log 5.1429 252 0.7113 0.7526 0.7113 0.8434
No log 5.1837 254 0.8310 0.7685 0.8310 0.9116
No log 5.2245 256 0.9715 0.7014 0.9715 0.9857
No log 5.2653 258 0.9511 0.7681 0.9511 0.9752
No log 5.3061 260 0.8594 0.7685 0.8594 0.9270
No log 5.3469 262 0.7517 0.7196 0.7517 0.8670
No log 5.3878 264 0.6897 0.7447 0.6897 0.8305
No log 5.4286 266 0.7045 0.7447 0.7045 0.8393
No log 5.4694 268 0.7824 0.7924 0.7824 0.8846
No log 5.5102 270 0.9504 0.7429 0.9504 0.9749
No log 5.5510 272 1.0540 0.7014 1.0540 1.0266
No log 5.5918 274 1.0036 0.7014 1.0036 1.0018
No log 5.6327 276 0.8519 0.7775 0.8519 0.9230
No log 5.6735 278 0.7349 0.7779 0.7349 0.8573
No log 5.7143 280 0.6053 0.7955 0.6053 0.7780
No log 5.7551 282 0.5676 0.7859 0.5676 0.7534
No log 5.7959 284 0.6013 0.7955 0.6013 0.7754
No log 5.8367 286 0.6872 0.7779 0.6872 0.8290
No log 5.8776 288 0.7929 0.8180 0.7929 0.8904
No log 5.9184 290 0.8004 0.8076 0.8004 0.8946
No log 5.9592 292 0.7185 0.8079 0.7185 0.8476
No log 6.0 294 0.6123 0.8607 0.6123 0.7825
No log 6.0408 296 0.5838 0.8144 0.5838 0.7641
No log 6.0816 298 0.6197 0.8721 0.6197 0.7872
No log 6.1224 300 0.7583 0.8195 0.7583 0.8708
No log 6.1633 302 0.8820 0.7979 0.8820 0.9391
No log 6.2041 304 0.9183 0.7979 0.9183 0.9583
No log 6.2449 306 0.8715 0.7681 0.8715 0.9335
No log 6.2857 308 0.7762 0.7924 0.7762 0.8810
No log 6.3265 310 0.6782 0.8352 0.6782 0.8235
No log 6.3673 312 0.6308 0.8352 0.6308 0.7942
No log 6.4082 314 0.6026 0.8352 0.6026 0.7762
No log 6.4490 316 0.6349 0.8607 0.6349 0.7968
No log 6.4898 318 0.7361 0.8180 0.7361 0.8580
No log 6.5306 320 0.8751 0.7979 0.8751 0.9355
No log 6.5714 322 0.9450 0.7911 0.9450 0.9721
No log 6.6122 324 0.8764 0.8235 0.8764 0.9362
No log 6.6531 326 0.8078 0.8349 0.8078 0.8988
No log 6.6939 328 0.7534 0.8349 0.7534 0.8680
No log 6.7347 330 0.7588 0.8349 0.7588 0.8711
No log 6.7755 332 0.7371 0.8349 0.7371 0.8585
No log 6.8163 334 0.6876 0.8349 0.6876 0.8292
No log 6.8571 336 0.6411 0.8349 0.6411 0.8007
No log 6.8980 338 0.6474 0.8349 0.6474 0.8046
No log 6.9388 340 0.6162 0.8465 0.6162 0.7850
No log 6.9796 342 0.5961 0.8565 0.5961 0.7721
No log 7.0204 344 0.6003 0.8565 0.6003 0.7748
No log 7.0612 346 0.6564 0.8681 0.6564 0.8102
No log 7.1020 348 0.7397 0.8399 0.7397 0.8601
No log 7.1429 350 0.7687 0.7982 0.7687 0.8767
No log 7.1837 352 0.7431 0.8079 0.7431 0.8620
No log 7.2245 354 0.7140 0.8465 0.7140 0.8450
No log 7.2653 356 0.7440 0.8349 0.7440 0.8626
No log 7.3061 358 0.7750 0.7775 0.7750 0.8803
No log 7.3469 360 0.7720 0.8229 0.7720 0.8786
No log 7.3878 362 0.7863 0.8229 0.7863 0.8867
No log 7.4286 364 0.7795 0.8229 0.7795 0.8829
No log 7.4694 366 0.7302 0.8229 0.7302 0.8545
No log 7.5102 368 0.7125 0.8586 0.7125 0.8441
No log 7.5510 370 0.6847 0.8586 0.6847 0.8275
No log 7.5918 372 0.6773 0.8465 0.6773 0.8230
No log 7.6327 374 0.6575 0.8352 0.6575 0.8109
No log 7.6735 376 0.6645 0.8352 0.6645 0.8151
No log 7.7143 378 0.7011 0.8465 0.7011 0.8373
No log 7.7551 380 0.7190 0.8465 0.7190 0.8480
No log 7.7959 382 0.7148 0.8465 0.7148 0.8454
No log 7.8367 384 0.7001 0.8465 0.7001 0.8367
No log 7.8776 386 0.6857 0.8352 0.6857 0.8280
No log 7.9184 388 0.7148 0.8465 0.7148 0.8454
No log 7.9592 390 0.7728 0.8295 0.7728 0.8791
No log 8.0 392 0.8187 0.8076 0.8187 0.9048
No log 8.0408 394 0.8145 0.8076 0.8145 0.9025
No log 8.0816 396 0.8144 0.8016 0.8144 0.9024
No log 8.1224 398 0.7854 0.8586 0.7854 0.8862
No log 8.1633 400 0.7455 0.8465 0.7455 0.8634
No log 8.2041 402 0.7300 0.8465 0.7300 0.8544
No log 8.2449 404 0.7076 0.8465 0.7076 0.8412
No log 8.2857 406 0.7070 0.8465 0.7070 0.8408
No log 8.3265 408 0.7052 0.8465 0.7052 0.8398
No log 8.3673 410 0.7147 0.8465 0.7147 0.8454
No log 8.4082 412 0.7596 0.8295 0.7596 0.8716
No log 8.4490 414 0.8369 0.8195 0.8369 0.9148
No log 8.4898 416 0.8907 0.8192 0.8907 0.9438
No log 8.5306 418 0.9329 0.7805 0.9329 0.9658
No log 8.5714 420 0.9738 0.7805 0.9738 0.9868
No log 8.6122 422 0.9899 0.7805 0.9899 0.9949
No log 8.6531 424 0.9638 0.7805 0.9638 0.9817
No log 8.6939 426 0.9011 0.8100 0.9011 0.9493
No log 8.7347 428 0.8287 0.8195 0.8287 0.9103
No log 8.7755 430 0.7889 0.8295 0.7889 0.8882
No log 8.8163 432 0.7691 0.8019 0.7691 0.8770
No log 8.8571 434 0.7512 0.8019 0.7512 0.8667
No log 8.8980 436 0.7342 0.8019 0.7342 0.8569
No log 8.9388 438 0.7156 0.8019 0.7156 0.8459
No log 8.9796 440 0.7045 0.8019 0.7045 0.8393
No log 9.0204 442 0.6893 0.8019 0.6893 0.8302
No log 9.0612 444 0.6862 0.8019 0.6862 0.8283
No log 9.1020 446 0.6846 0.8019 0.6846 0.8274
No log 9.1429 448 0.6871 0.8019 0.6871 0.8289
No log 9.1837 450 0.6942 0.8019 0.6942 0.8332
No log 9.2245 452 0.7008 0.8019 0.7008 0.8371
No log 9.2653 454 0.7193 0.8019 0.7193 0.8481
No log 9.3061 456 0.7484 0.8019 0.7484 0.8651
No log 9.3469 458 0.7729 0.8399 0.7729 0.8792
No log 9.3878 460 0.7970 0.8399 0.7970 0.8928
No log 9.4286 462 0.8194 0.8399 0.8194 0.9052
No log 9.4694 464 0.8239 0.8399 0.8239 0.9077
No log 9.5102 466 0.8296 0.8399 0.8296 0.9108
No log 9.5510 468 0.8345 0.8399 0.8345 0.9135
No log 9.5918 470 0.8270 0.8399 0.8270 0.9094
No log 9.6327 472 0.8107 0.8399 0.8107 0.9004
No log 9.6735 474 0.7943 0.8399 0.7943 0.8912
No log 9.7143 476 0.7816 0.8399 0.7816 0.8841
No log 9.7551 478 0.7706 0.8399 0.7706 0.8778
No log 9.7959 480 0.7630 0.8399 0.7630 0.8735
No log 9.8367 482 0.7605 0.8399 0.7605 0.8721
No log 9.8776 484 0.7601 0.8399 0.7601 0.8719
No log 9.9184 486 0.7600 0.8399 0.7600 0.8718
No log 9.9592 488 0.7593 0.8399 0.7593 0.8714
No log 10.0 490 0.7593 0.8399 0.7593 0.8714

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0+cu118
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
161
Safetensors
Model size
135M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for MayBashendy/Arabic_FineTuningAraBERT_AugV4-trial2_k2_task1_organization_fold0

Finetuned
(4222)
this model