Arabic_FineTuningAraBERT_AugV4-trial2_k1_task1_organization_fold1

This model is a fine-tuned version of aubmindlab/bert-base-arabertv02 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7333
  • Qwk: 0.6729
  • Mse: 0.7333
  • Rmse: 0.8563

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Qwk Mse Rmse
No log 0.0714 2 3.8146 -0.0294 3.8146 1.9531
No log 0.1429 4 2.2548 0.0 2.2548 1.5016
No log 0.2143 6 1.1272 0.2119 1.1272 1.0617
No log 0.2857 8 0.7637 0.0978 0.7637 0.8739
No log 0.3571 10 0.6722 0.3824 0.6722 0.8199
No log 0.4286 12 0.6702 0.3689 0.6702 0.8187
No log 0.5 14 0.7288 0.4362 0.7288 0.8537
No log 0.5714 16 1.6902 0.1860 1.6902 1.3001
No log 0.6429 18 1.5456 0.1993 1.5456 1.2432
No log 0.7143 20 0.6476 0.3772 0.6476 0.8047
No log 0.7857 22 0.9943 0.4043 0.9943 0.9972
No log 0.8571 24 1.1152 0.2125 1.1152 1.0560
No log 0.9286 26 1.0173 0.3253 1.0173 1.0086
No log 1.0 28 0.9906 0.3253 0.9906 0.9953
No log 1.0714 30 0.7044 0.4 0.7044 0.8393
No log 1.1429 32 0.6103 0.4784 0.6103 0.7812
No log 1.2143 34 0.6634 0.4655 0.6634 0.8145
No log 1.2857 36 0.8933 0.3214 0.8933 0.9451
No log 1.3571 38 0.7858 0.5664 0.7858 0.8864
No log 1.4286 40 0.8052 0.5461 0.8052 0.8973
No log 1.5 42 0.7723 0.5509 0.7723 0.8788
No log 1.5714 44 0.6809 0.5103 0.6809 0.8251
No log 1.6429 46 0.6220 0.5154 0.6220 0.7887
No log 1.7143 48 0.6340 0.5509 0.6340 0.7963
No log 1.7857 50 0.7130 0.6889 0.7130 0.8444
No log 1.8571 52 0.7874 0.7482 0.7874 0.8873
No log 1.9286 54 0.7208 0.7260 0.7208 0.8490
No log 2.0 56 0.5464 0.6291 0.5464 0.7392
No log 2.0714 58 0.5596 0.5333 0.5596 0.7481
No log 2.1429 60 0.5768 0.6316 0.5768 0.7595
No log 2.2143 62 0.7518 0.6762 0.7518 0.8671
No log 2.2857 64 0.9367 0.6316 0.9367 0.9678
No log 2.3571 66 0.9494 0.7063 0.9494 0.9744
No log 2.4286 68 0.7175 0.7260 0.7175 0.8470
No log 2.5 70 0.4936 0.6715 0.4936 0.7026
No log 2.5714 72 0.4833 0.6316 0.4833 0.6952
No log 2.6429 74 0.6173 0.7442 0.6173 0.7857
No log 2.7143 76 0.7408 0.7390 0.7408 0.8607
No log 2.7857 78 0.6953 0.6776 0.6953 0.8338
No log 2.8571 80 0.6526 0.64 0.6526 0.8078
No log 2.9286 82 0.7279 0.5075 0.7279 0.8532
No log 3.0 84 0.7548 0.5075 0.7548 0.8688
No log 3.0714 86 0.7592 0.5764 0.7592 0.8713
No log 3.1429 88 0.9020 0.7423 0.9020 0.9498
No log 3.2143 90 0.9350 0.7423 0.9350 0.9670
No log 3.2857 92 0.8444 0.6189 0.8444 0.9189
No log 3.3571 94 0.7783 0.6089 0.7783 0.8822
No log 3.4286 96 0.7801 0.6089 0.7801 0.8832
No log 3.5 98 0.8015 0.7234 0.8015 0.8953
No log 3.5714 100 0.7534 0.6510 0.7534 0.8680
No log 3.6429 102 0.7209 0.6361 0.7209 0.8491
No log 3.7143 104 0.6355 0.6606 0.6355 0.7972
No log 3.7857 106 0.6019 0.64 0.6019 0.7758
No log 3.8571 108 0.6034 0.6077 0.6034 0.7768
No log 3.9286 110 0.5846 0.7016 0.5846 0.7646
No log 4.0 112 0.5726 0.6755 0.5726 0.7567
No log 4.0714 114 0.6283 0.6645 0.6283 0.7926
No log 4.1429 116 0.6493 0.7036 0.6493 0.8058
No log 4.2143 118 0.6553 0.6645 0.6553 0.8095
No log 4.2857 120 0.6989 0.6645 0.6989 0.8360
No log 4.3571 122 0.7614 0.6645 0.7614 0.8726
No log 4.4286 124 0.7895 0.6645 0.7895 0.8885
No log 4.5 126 0.7961 0.7601 0.7961 0.8922
No log 4.5714 128 0.7882 0.7601 0.7882 0.8878
No log 4.6429 130 0.8092 0.7556 0.8092 0.8996
No log 4.7143 132 0.7436 0.7601 0.7436 0.8623
No log 4.7857 134 0.6792 0.6645 0.6792 0.8242
No log 4.8571 136 0.6995 0.6645 0.6995 0.8364
No log 4.9286 138 0.8225 0.6729 0.8225 0.9069
No log 5.0 140 0.8711 0.7308 0.8711 0.9333
No log 5.0714 142 0.7923 0.6729 0.7923 0.8901
No log 5.1429 144 0.7059 0.6387 0.7059 0.8402
No log 5.2143 146 0.6977 0.6387 0.6977 0.8353
No log 5.2857 148 0.7675 0.6387 0.7675 0.8761
No log 5.3571 150 0.7971 0.6387 0.7971 0.8928
No log 5.4286 152 0.7856 0.6316 0.7856 0.8863
No log 5.5 154 0.7008 0.6387 0.7008 0.8371
No log 5.5714 156 0.6644 0.6522 0.6644 0.8151
No log 5.6429 158 0.6607 0.6077 0.6607 0.8128
No log 5.7143 160 0.6623 0.6270 0.6623 0.8138
No log 5.7857 162 0.6595 0.6182 0.6595 0.8121
No log 5.8571 164 0.6661 0.7601 0.6661 0.8162
No log 5.9286 166 0.6810 0.7799 0.6810 0.8252
No log 6.0 168 0.7289 0.7308 0.7289 0.8537
No log 6.0714 170 0.7186 0.7308 0.7186 0.8477
No log 6.1429 172 0.6959 0.7358 0.6959 0.8342
No log 6.2143 174 0.7044 0.7358 0.7044 0.8393
No log 6.2857 176 0.7061 0.7358 0.7061 0.8403
No log 6.3571 178 0.6975 0.7358 0.6975 0.8352
No log 6.4286 180 0.7205 0.7358 0.7205 0.8488
No log 6.5 182 0.6922 0.7601 0.6922 0.8320
No log 6.5714 184 0.6710 0.7601 0.6710 0.8191
No log 6.6429 186 0.6405 0.6975 0.6405 0.8003
No log 6.7143 188 0.6146 0.6645 0.6146 0.7840
No log 6.7857 190 0.6002 0.6899 0.6002 0.7748
No log 6.8571 192 0.6031 0.6899 0.6031 0.7766
No log 6.9286 194 0.6268 0.6645 0.6268 0.7917
No log 7.0 196 0.6957 0.7358 0.6957 0.8341
No log 7.0714 198 0.7721 0.7556 0.7721 0.8787
No log 7.1429 200 0.8589 0.7390 0.8589 0.9268
No log 7.2143 202 0.8665 0.7390 0.8665 0.9309
No log 7.2857 204 0.7894 0.7556 0.7894 0.8885
No log 7.3571 206 0.7372 0.7358 0.7372 0.8586
No log 7.4286 208 0.7042 0.7358 0.7042 0.8392
No log 7.5 210 0.6753 0.6729 0.6753 0.8218
No log 7.5714 212 0.6791 0.6387 0.6791 0.8241
No log 7.6429 214 0.6934 0.6387 0.6934 0.8327
No log 7.7143 216 0.7315 0.7358 0.7315 0.8553
No log 7.7857 218 0.7816 0.7308 0.7816 0.8841
No log 7.8571 220 0.8662 0.7308 0.8662 0.9307
No log 7.9286 222 0.8856 0.7308 0.8856 0.9411
No log 8.0 224 0.8401 0.7308 0.8401 0.9166
No log 8.0714 226 0.7693 0.7308 0.7693 0.8771
No log 8.1429 228 0.7047 0.7556 0.7047 0.8395
No log 8.2143 230 0.6567 0.6645 0.6567 0.8104
No log 8.2857 232 0.6280 0.6645 0.6280 0.7925
No log 8.3571 234 0.6228 0.6645 0.6228 0.7892
No log 8.4286 236 0.6332 0.6645 0.6332 0.7957
No log 8.5 238 0.6486 0.6645 0.6486 0.8054
No log 8.5714 240 0.6679 0.6645 0.6679 0.8172
No log 8.6429 242 0.7122 0.7308 0.7122 0.8439
No log 8.7143 244 0.7546 0.7308 0.7546 0.8687
No log 8.7857 246 0.7864 0.7308 0.7864 0.8868
No log 8.8571 248 0.8107 0.7308 0.8107 0.9004
No log 8.9286 250 0.8133 0.7308 0.8133 0.9018
No log 9.0 252 0.7984 0.7308 0.7984 0.8935
No log 9.0714 254 0.7749 0.6667 0.7749 0.8803
No log 9.1429 256 0.7676 0.6478 0.7676 0.8761
No log 9.2143 258 0.7525 0.6729 0.7525 0.8675
No log 9.2857 260 0.7398 0.6729 0.7398 0.8601
No log 9.3571 262 0.7280 0.6729 0.7280 0.8532
No log 9.4286 264 0.7182 0.6729 0.7182 0.8475
No log 9.5 266 0.7180 0.6729 0.7180 0.8473
No log 9.5714 268 0.7218 0.6729 0.7218 0.8496
No log 9.6429 270 0.7256 0.6729 0.7256 0.8518
No log 9.7143 272 0.7262 0.6729 0.7262 0.8522
No log 9.7857 274 0.7289 0.6729 0.7289 0.8537
No log 9.8571 276 0.7296 0.6729 0.7296 0.8542
No log 9.9286 278 0.7316 0.6729 0.7316 0.8553
No log 10.0 280 0.7333 0.6729 0.7333 0.8563

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0+cu118
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
179
Safetensors
Model size
135M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for MayBashendy/Arabic_FineTuningAraBERT_AugV4-trial2_k1_task1_organization_fold1

Finetuned
(4222)
this model