Arabic_FineTuningAraBERT_AugV4-trial2_k1_task1_organization_fold1
This model is a fine-tuned version of aubmindlab/bert-base-arabertv02 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.7333
- Qwk: 0.6729
- Mse: 0.7333
- Rmse: 0.8563
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse |
---|---|---|---|---|---|---|
No log | 0.0714 | 2 | 3.8146 | -0.0294 | 3.8146 | 1.9531 |
No log | 0.1429 | 4 | 2.2548 | 0.0 | 2.2548 | 1.5016 |
No log | 0.2143 | 6 | 1.1272 | 0.2119 | 1.1272 | 1.0617 |
No log | 0.2857 | 8 | 0.7637 | 0.0978 | 0.7637 | 0.8739 |
No log | 0.3571 | 10 | 0.6722 | 0.3824 | 0.6722 | 0.8199 |
No log | 0.4286 | 12 | 0.6702 | 0.3689 | 0.6702 | 0.8187 |
No log | 0.5 | 14 | 0.7288 | 0.4362 | 0.7288 | 0.8537 |
No log | 0.5714 | 16 | 1.6902 | 0.1860 | 1.6902 | 1.3001 |
No log | 0.6429 | 18 | 1.5456 | 0.1993 | 1.5456 | 1.2432 |
No log | 0.7143 | 20 | 0.6476 | 0.3772 | 0.6476 | 0.8047 |
No log | 0.7857 | 22 | 0.9943 | 0.4043 | 0.9943 | 0.9972 |
No log | 0.8571 | 24 | 1.1152 | 0.2125 | 1.1152 | 1.0560 |
No log | 0.9286 | 26 | 1.0173 | 0.3253 | 1.0173 | 1.0086 |
No log | 1.0 | 28 | 0.9906 | 0.3253 | 0.9906 | 0.9953 |
No log | 1.0714 | 30 | 0.7044 | 0.4 | 0.7044 | 0.8393 |
No log | 1.1429 | 32 | 0.6103 | 0.4784 | 0.6103 | 0.7812 |
No log | 1.2143 | 34 | 0.6634 | 0.4655 | 0.6634 | 0.8145 |
No log | 1.2857 | 36 | 0.8933 | 0.3214 | 0.8933 | 0.9451 |
No log | 1.3571 | 38 | 0.7858 | 0.5664 | 0.7858 | 0.8864 |
No log | 1.4286 | 40 | 0.8052 | 0.5461 | 0.8052 | 0.8973 |
No log | 1.5 | 42 | 0.7723 | 0.5509 | 0.7723 | 0.8788 |
No log | 1.5714 | 44 | 0.6809 | 0.5103 | 0.6809 | 0.8251 |
No log | 1.6429 | 46 | 0.6220 | 0.5154 | 0.6220 | 0.7887 |
No log | 1.7143 | 48 | 0.6340 | 0.5509 | 0.6340 | 0.7963 |
No log | 1.7857 | 50 | 0.7130 | 0.6889 | 0.7130 | 0.8444 |
No log | 1.8571 | 52 | 0.7874 | 0.7482 | 0.7874 | 0.8873 |
No log | 1.9286 | 54 | 0.7208 | 0.7260 | 0.7208 | 0.8490 |
No log | 2.0 | 56 | 0.5464 | 0.6291 | 0.5464 | 0.7392 |
No log | 2.0714 | 58 | 0.5596 | 0.5333 | 0.5596 | 0.7481 |
No log | 2.1429 | 60 | 0.5768 | 0.6316 | 0.5768 | 0.7595 |
No log | 2.2143 | 62 | 0.7518 | 0.6762 | 0.7518 | 0.8671 |
No log | 2.2857 | 64 | 0.9367 | 0.6316 | 0.9367 | 0.9678 |
No log | 2.3571 | 66 | 0.9494 | 0.7063 | 0.9494 | 0.9744 |
No log | 2.4286 | 68 | 0.7175 | 0.7260 | 0.7175 | 0.8470 |
No log | 2.5 | 70 | 0.4936 | 0.6715 | 0.4936 | 0.7026 |
No log | 2.5714 | 72 | 0.4833 | 0.6316 | 0.4833 | 0.6952 |
No log | 2.6429 | 74 | 0.6173 | 0.7442 | 0.6173 | 0.7857 |
No log | 2.7143 | 76 | 0.7408 | 0.7390 | 0.7408 | 0.8607 |
No log | 2.7857 | 78 | 0.6953 | 0.6776 | 0.6953 | 0.8338 |
No log | 2.8571 | 80 | 0.6526 | 0.64 | 0.6526 | 0.8078 |
No log | 2.9286 | 82 | 0.7279 | 0.5075 | 0.7279 | 0.8532 |
No log | 3.0 | 84 | 0.7548 | 0.5075 | 0.7548 | 0.8688 |
No log | 3.0714 | 86 | 0.7592 | 0.5764 | 0.7592 | 0.8713 |
No log | 3.1429 | 88 | 0.9020 | 0.7423 | 0.9020 | 0.9498 |
No log | 3.2143 | 90 | 0.9350 | 0.7423 | 0.9350 | 0.9670 |
No log | 3.2857 | 92 | 0.8444 | 0.6189 | 0.8444 | 0.9189 |
No log | 3.3571 | 94 | 0.7783 | 0.6089 | 0.7783 | 0.8822 |
No log | 3.4286 | 96 | 0.7801 | 0.6089 | 0.7801 | 0.8832 |
No log | 3.5 | 98 | 0.8015 | 0.7234 | 0.8015 | 0.8953 |
No log | 3.5714 | 100 | 0.7534 | 0.6510 | 0.7534 | 0.8680 |
No log | 3.6429 | 102 | 0.7209 | 0.6361 | 0.7209 | 0.8491 |
No log | 3.7143 | 104 | 0.6355 | 0.6606 | 0.6355 | 0.7972 |
No log | 3.7857 | 106 | 0.6019 | 0.64 | 0.6019 | 0.7758 |
No log | 3.8571 | 108 | 0.6034 | 0.6077 | 0.6034 | 0.7768 |
No log | 3.9286 | 110 | 0.5846 | 0.7016 | 0.5846 | 0.7646 |
No log | 4.0 | 112 | 0.5726 | 0.6755 | 0.5726 | 0.7567 |
No log | 4.0714 | 114 | 0.6283 | 0.6645 | 0.6283 | 0.7926 |
No log | 4.1429 | 116 | 0.6493 | 0.7036 | 0.6493 | 0.8058 |
No log | 4.2143 | 118 | 0.6553 | 0.6645 | 0.6553 | 0.8095 |
No log | 4.2857 | 120 | 0.6989 | 0.6645 | 0.6989 | 0.8360 |
No log | 4.3571 | 122 | 0.7614 | 0.6645 | 0.7614 | 0.8726 |
No log | 4.4286 | 124 | 0.7895 | 0.6645 | 0.7895 | 0.8885 |
No log | 4.5 | 126 | 0.7961 | 0.7601 | 0.7961 | 0.8922 |
No log | 4.5714 | 128 | 0.7882 | 0.7601 | 0.7882 | 0.8878 |
No log | 4.6429 | 130 | 0.8092 | 0.7556 | 0.8092 | 0.8996 |
No log | 4.7143 | 132 | 0.7436 | 0.7601 | 0.7436 | 0.8623 |
No log | 4.7857 | 134 | 0.6792 | 0.6645 | 0.6792 | 0.8242 |
No log | 4.8571 | 136 | 0.6995 | 0.6645 | 0.6995 | 0.8364 |
No log | 4.9286 | 138 | 0.8225 | 0.6729 | 0.8225 | 0.9069 |
No log | 5.0 | 140 | 0.8711 | 0.7308 | 0.8711 | 0.9333 |
No log | 5.0714 | 142 | 0.7923 | 0.6729 | 0.7923 | 0.8901 |
No log | 5.1429 | 144 | 0.7059 | 0.6387 | 0.7059 | 0.8402 |
No log | 5.2143 | 146 | 0.6977 | 0.6387 | 0.6977 | 0.8353 |
No log | 5.2857 | 148 | 0.7675 | 0.6387 | 0.7675 | 0.8761 |
No log | 5.3571 | 150 | 0.7971 | 0.6387 | 0.7971 | 0.8928 |
No log | 5.4286 | 152 | 0.7856 | 0.6316 | 0.7856 | 0.8863 |
No log | 5.5 | 154 | 0.7008 | 0.6387 | 0.7008 | 0.8371 |
No log | 5.5714 | 156 | 0.6644 | 0.6522 | 0.6644 | 0.8151 |
No log | 5.6429 | 158 | 0.6607 | 0.6077 | 0.6607 | 0.8128 |
No log | 5.7143 | 160 | 0.6623 | 0.6270 | 0.6623 | 0.8138 |
No log | 5.7857 | 162 | 0.6595 | 0.6182 | 0.6595 | 0.8121 |
No log | 5.8571 | 164 | 0.6661 | 0.7601 | 0.6661 | 0.8162 |
No log | 5.9286 | 166 | 0.6810 | 0.7799 | 0.6810 | 0.8252 |
No log | 6.0 | 168 | 0.7289 | 0.7308 | 0.7289 | 0.8537 |
No log | 6.0714 | 170 | 0.7186 | 0.7308 | 0.7186 | 0.8477 |
No log | 6.1429 | 172 | 0.6959 | 0.7358 | 0.6959 | 0.8342 |
No log | 6.2143 | 174 | 0.7044 | 0.7358 | 0.7044 | 0.8393 |
No log | 6.2857 | 176 | 0.7061 | 0.7358 | 0.7061 | 0.8403 |
No log | 6.3571 | 178 | 0.6975 | 0.7358 | 0.6975 | 0.8352 |
No log | 6.4286 | 180 | 0.7205 | 0.7358 | 0.7205 | 0.8488 |
No log | 6.5 | 182 | 0.6922 | 0.7601 | 0.6922 | 0.8320 |
No log | 6.5714 | 184 | 0.6710 | 0.7601 | 0.6710 | 0.8191 |
No log | 6.6429 | 186 | 0.6405 | 0.6975 | 0.6405 | 0.8003 |
No log | 6.7143 | 188 | 0.6146 | 0.6645 | 0.6146 | 0.7840 |
No log | 6.7857 | 190 | 0.6002 | 0.6899 | 0.6002 | 0.7748 |
No log | 6.8571 | 192 | 0.6031 | 0.6899 | 0.6031 | 0.7766 |
No log | 6.9286 | 194 | 0.6268 | 0.6645 | 0.6268 | 0.7917 |
No log | 7.0 | 196 | 0.6957 | 0.7358 | 0.6957 | 0.8341 |
No log | 7.0714 | 198 | 0.7721 | 0.7556 | 0.7721 | 0.8787 |
No log | 7.1429 | 200 | 0.8589 | 0.7390 | 0.8589 | 0.9268 |
No log | 7.2143 | 202 | 0.8665 | 0.7390 | 0.8665 | 0.9309 |
No log | 7.2857 | 204 | 0.7894 | 0.7556 | 0.7894 | 0.8885 |
No log | 7.3571 | 206 | 0.7372 | 0.7358 | 0.7372 | 0.8586 |
No log | 7.4286 | 208 | 0.7042 | 0.7358 | 0.7042 | 0.8392 |
No log | 7.5 | 210 | 0.6753 | 0.6729 | 0.6753 | 0.8218 |
No log | 7.5714 | 212 | 0.6791 | 0.6387 | 0.6791 | 0.8241 |
No log | 7.6429 | 214 | 0.6934 | 0.6387 | 0.6934 | 0.8327 |
No log | 7.7143 | 216 | 0.7315 | 0.7358 | 0.7315 | 0.8553 |
No log | 7.7857 | 218 | 0.7816 | 0.7308 | 0.7816 | 0.8841 |
No log | 7.8571 | 220 | 0.8662 | 0.7308 | 0.8662 | 0.9307 |
No log | 7.9286 | 222 | 0.8856 | 0.7308 | 0.8856 | 0.9411 |
No log | 8.0 | 224 | 0.8401 | 0.7308 | 0.8401 | 0.9166 |
No log | 8.0714 | 226 | 0.7693 | 0.7308 | 0.7693 | 0.8771 |
No log | 8.1429 | 228 | 0.7047 | 0.7556 | 0.7047 | 0.8395 |
No log | 8.2143 | 230 | 0.6567 | 0.6645 | 0.6567 | 0.8104 |
No log | 8.2857 | 232 | 0.6280 | 0.6645 | 0.6280 | 0.7925 |
No log | 8.3571 | 234 | 0.6228 | 0.6645 | 0.6228 | 0.7892 |
No log | 8.4286 | 236 | 0.6332 | 0.6645 | 0.6332 | 0.7957 |
No log | 8.5 | 238 | 0.6486 | 0.6645 | 0.6486 | 0.8054 |
No log | 8.5714 | 240 | 0.6679 | 0.6645 | 0.6679 | 0.8172 |
No log | 8.6429 | 242 | 0.7122 | 0.7308 | 0.7122 | 0.8439 |
No log | 8.7143 | 244 | 0.7546 | 0.7308 | 0.7546 | 0.8687 |
No log | 8.7857 | 246 | 0.7864 | 0.7308 | 0.7864 | 0.8868 |
No log | 8.8571 | 248 | 0.8107 | 0.7308 | 0.8107 | 0.9004 |
No log | 8.9286 | 250 | 0.8133 | 0.7308 | 0.8133 | 0.9018 |
No log | 9.0 | 252 | 0.7984 | 0.7308 | 0.7984 | 0.8935 |
No log | 9.0714 | 254 | 0.7749 | 0.6667 | 0.7749 | 0.8803 |
No log | 9.1429 | 256 | 0.7676 | 0.6478 | 0.7676 | 0.8761 |
No log | 9.2143 | 258 | 0.7525 | 0.6729 | 0.7525 | 0.8675 |
No log | 9.2857 | 260 | 0.7398 | 0.6729 | 0.7398 | 0.8601 |
No log | 9.3571 | 262 | 0.7280 | 0.6729 | 0.7280 | 0.8532 |
No log | 9.4286 | 264 | 0.7182 | 0.6729 | 0.7182 | 0.8475 |
No log | 9.5 | 266 | 0.7180 | 0.6729 | 0.7180 | 0.8473 |
No log | 9.5714 | 268 | 0.7218 | 0.6729 | 0.7218 | 0.8496 |
No log | 9.6429 | 270 | 0.7256 | 0.6729 | 0.7256 | 0.8518 |
No log | 9.7143 | 272 | 0.7262 | 0.6729 | 0.7262 | 0.8522 |
No log | 9.7857 | 274 | 0.7289 | 0.6729 | 0.7289 | 0.8537 |
No log | 9.8571 | 276 | 0.7296 | 0.6729 | 0.7296 | 0.8542 |
No log | 9.9286 | 278 | 0.7316 | 0.6729 | 0.7316 | 0.8553 |
No log | 10.0 | 280 | 0.7333 | 0.6729 | 0.7333 | 0.8563 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.0+cu118
- Datasets 2.21.0
- Tokenizers 0.19.1
- Downloads last month
- 179
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for MayBashendy/Arabic_FineTuningAraBERT_AugV4-trial2_k1_task1_organization_fold1
Base model
aubmindlab/bert-base-arabertv02