Arabic_FineTuningAraBERT_AugV0_k4_task1_organization_fold1

This model is a fine-tuned version of aubmindlab/bert-base-arabertv02 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4553
  • Qwk: 0.7059
  • Mse: 0.4553
  • Rmse: 0.6747

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Qwk Mse Rmse
No log 0.0645 2 3.1513 0.0397 3.1513 1.7752
No log 0.1290 4 2.5458 -0.0868 2.5458 1.5955
No log 0.1935 6 1.9193 0.0 1.9193 1.3854
No log 0.2581 8 1.3752 0.0 1.3752 1.1727
No log 0.3226 10 1.0491 -0.0201 1.0491 1.0243
No log 0.3871 12 0.9697 0.125 0.9697 0.9847
No log 0.4516 14 0.9616 0.125 0.9616 0.9806
No log 0.5161 16 0.9347 0.125 0.9347 0.9668
No log 0.5806 18 0.9044 0.125 0.9044 0.9510
No log 0.6452 20 0.8474 0.0723 0.8474 0.9205
No log 0.7097 22 0.8237 0.1860 0.8237 0.9076
No log 0.7742 24 0.7729 0.0982 0.7729 0.8791
No log 0.8387 26 0.9338 0.1091 0.9338 0.9663
No log 0.9032 28 0.9713 0.1091 0.9713 0.9855
No log 0.9677 30 0.8285 0.1529 0.8285 0.9102
No log 1.0323 32 0.6424 0.2410 0.6424 0.8015
No log 1.0968 34 0.7408 0.4667 0.7408 0.8607
No log 1.1613 36 0.6525 0.5435 0.6525 0.8078
No log 1.2258 38 0.6256 0.3253 0.6256 0.7909
No log 1.2903 40 0.6605 0.1840 0.6605 0.8127
No log 1.3548 42 0.6306 0.1840 0.6306 0.7941
No log 1.4194 44 0.6558 0.2125 0.6558 0.8098
No log 1.4839 46 0.6048 0.3298 0.6048 0.7777
No log 1.5484 48 0.5490 0.51 0.5490 0.7409
No log 1.6129 50 0.5520 0.5646 0.5520 0.7429
No log 1.6774 52 0.5387 0.5922 0.5387 0.7340
No log 1.7419 54 0.5495 0.2784 0.5495 0.7413
No log 1.8065 56 0.5493 0.2784 0.5493 0.7411
No log 1.8710 58 0.5913 0.3756 0.5913 0.7690
No log 1.9355 60 0.6317 0.2857 0.6317 0.7948
No log 2.0 62 0.5659 0.2054 0.5659 0.7523
No log 2.0645 64 0.4859 0.6316 0.4859 0.6971
No log 2.1290 66 0.5249 0.5776 0.5249 0.7245
No log 2.1935 68 0.4512 0.6160 0.4512 0.6717
No log 2.2581 70 0.5069 0.4936 0.5069 0.7119
No log 2.3226 72 0.5434 0.5679 0.5434 0.7371
No log 2.3871 74 0.4708 0.7222 0.4708 0.6861
No log 2.4516 76 0.4185 0.7407 0.4185 0.6470
No log 2.5161 78 0.4417 0.72 0.4417 0.6646
No log 2.5806 80 0.5248 0.6459 0.5248 0.7245
No log 2.6452 82 0.4499 0.6912 0.4499 0.6708
No log 2.7097 84 0.4598 0.5062 0.4598 0.6781
No log 2.7742 86 0.4707 0.5070 0.4707 0.6861
No log 2.8387 88 0.4799 0.5070 0.4799 0.6927
No log 2.9032 90 0.4765 0.6529 0.4765 0.6903
No log 2.9677 92 0.4959 0.5 0.4959 0.7042
No log 3.0323 94 0.5506 0.5679 0.5506 0.7420
No log 3.0968 96 0.5322 0.6231 0.5322 0.7295
No log 3.1613 98 0.4719 0.7260 0.4719 0.6870
No log 3.2258 100 0.4583 0.7260 0.4583 0.6770
No log 3.2903 102 0.4461 0.7260 0.4461 0.6679
No log 3.3548 104 0.4398 0.7260 0.4398 0.6632
No log 3.4194 106 0.4419 0.7260 0.4419 0.6648
No log 3.4839 108 0.5156 0.7072 0.5156 0.7180
No log 3.5484 110 0.5580 0.6831 0.5580 0.7470
No log 3.6129 112 0.4765 0.6723 0.4765 0.6903
No log 3.6774 114 0.4562 0.6667 0.4562 0.6755
No log 3.7419 116 0.4956 0.5294 0.4956 0.7040
No log 3.8065 118 0.4497 0.6613 0.4497 0.6706
No log 3.8710 120 0.4752 0.6983 0.4752 0.6894
No log 3.9355 122 0.6267 0.4979 0.6267 0.7916
No log 4.0 124 0.6176 0.4979 0.6176 0.7859
No log 4.0645 126 0.4781 0.6983 0.4781 0.6914
No log 4.1290 128 0.4388 0.5463 0.4388 0.6624
No log 4.1935 130 0.4497 0.6983 0.4497 0.6706
No log 4.2581 132 0.4361 0.6431 0.4361 0.6604
No log 4.3226 134 0.4308 0.6912 0.4308 0.6564
No log 4.3871 136 0.4227 0.7482 0.4227 0.6502
No log 4.4516 138 0.4763 0.7 0.4763 0.6902
No log 4.5161 140 0.6191 0.5817 0.6191 0.7868
No log 4.5806 142 0.7091 0.5405 0.7091 0.8421
No log 4.6452 144 0.6241 0.4979 0.6241 0.7900
No log 4.7097 146 0.6114 0.4979 0.6114 0.7819
No log 4.7742 148 0.5246 0.6983 0.5246 0.7243
No log 4.8387 150 0.4603 0.6471 0.4603 0.6784
No log 4.9032 152 0.4531 0.7449 0.4531 0.6731
No log 4.9677 154 0.4756 0.6723 0.4756 0.6897
No log 5.0323 156 0.5598 0.5044 0.5598 0.7482
No log 5.0968 158 0.6308 0.5484 0.6308 0.7942
No log 5.1613 160 0.5514 0.6026 0.5514 0.7426
No log 5.2258 162 0.5281 0.6016 0.5281 0.7267
No log 5.2903 164 0.4600 0.7222 0.4600 0.6782
No log 5.3548 166 0.4097 0.7758 0.4097 0.6401
No log 5.4194 168 0.4141 0.7758 0.4141 0.6435
No log 5.4839 170 0.4153 0.7535 0.4153 0.6445
No log 5.5484 172 0.4295 0.7348 0.4295 0.6554
No log 5.6129 174 0.4822 0.6097 0.4822 0.6944
No log 5.6774 176 0.6248 0.5484 0.6248 0.7905
No log 5.7419 178 0.6828 0.5484 0.6828 0.8263
No log 5.8065 180 0.6117 0.5484 0.6117 0.7821
No log 5.8710 182 0.4695 0.6111 0.4695 0.6852
No log 5.9355 184 0.4259 0.6857 0.4259 0.6526
No log 6.0 186 0.4294 0.6857 0.4294 0.6553
No log 6.0645 188 0.4517 0.6202 0.4517 0.6721
No log 6.1290 190 0.5042 0.6026 0.5042 0.7100
No log 6.1935 192 0.5668 0.4979 0.5668 0.7529
No log 6.2581 194 0.5471 0.5917 0.5471 0.7397
No log 6.3226 196 0.5437 0.5917 0.5437 0.7373
No log 6.3871 198 0.4935 0.5679 0.4935 0.7025
No log 6.4516 200 0.4819 0.6585 0.4819 0.6942
No log 6.5161 202 0.4648 0.6540 0.4648 0.6818
No log 6.5806 204 0.4744 0.6540 0.4744 0.6888
No log 6.6452 206 0.5413 0.6831 0.5413 0.7358
No log 6.7097 208 0.5930 0.6375 0.5930 0.7701
No log 6.7742 210 0.5442 0.7244 0.5442 0.7377
No log 6.8387 212 0.4453 0.6540 0.4453 0.6673
No log 6.9032 214 0.3990 0.7116 0.3990 0.6317
No log 6.9677 216 0.3976 0.7116 0.3976 0.6305
No log 7.0323 218 0.4236 0.6842 0.4236 0.6508
No log 7.0968 220 0.5093 0.6831 0.5093 0.7136
No log 7.1613 222 0.6180 0.5484 0.6180 0.7861
No log 7.2258 224 0.6504 0.5484 0.6504 0.8065
No log 7.2903 226 0.6087 0.5484 0.6087 0.7802
No log 7.3548 228 0.5257 0.5917 0.5257 0.7250
No log 7.4194 230 0.4673 0.6831 0.4673 0.6836
No log 7.4839 232 0.4322 0.6723 0.4322 0.6574
No log 7.5484 234 0.4306 0.7059 0.4306 0.6562
No log 7.6129 236 0.4521 0.6983 0.4521 0.6724
No log 7.6774 238 0.4868 0.6983 0.4868 0.6977
No log 7.7419 240 0.5160 0.5917 0.5160 0.7183
No log 7.8065 242 0.5395 0.5917 0.5395 0.7345
No log 7.8710 244 0.5223 0.5917 0.5223 0.7227
No log 7.9355 246 0.4758 0.6831 0.4758 0.6898
No log 8.0 248 0.4259 0.6744 0.4259 0.6526
No log 8.0645 250 0.4097 0.6818 0.4097 0.6401
No log 8.1290 252 0.4141 0.7050 0.4141 0.6435
No log 8.1935 254 0.4225 0.6744 0.4225 0.6500
No log 8.2581 256 0.4230 0.6744 0.4230 0.6504
No log 8.3226 258 0.4420 0.6744 0.4420 0.6648
No log 8.3871 260 0.4831 0.6842 0.4831 0.6950
No log 8.4516 262 0.5100 0.7244 0.5100 0.7142
No log 8.5161 264 0.5160 0.7244 0.5160 0.7183
No log 8.5806 266 0.4935 0.7154 0.4935 0.7025
No log 8.6452 268 0.4860 0.6908 0.4860 0.6971
No log 8.7097 270 0.4831 0.6908 0.4831 0.6951
No log 8.7742 272 0.4834 0.6831 0.4834 0.6953
No log 8.8387 274 0.4700 0.6908 0.4700 0.6856
No log 8.9032 276 0.4587 0.7059 0.4587 0.6773
No log 8.9677 278 0.4552 0.7059 0.4552 0.6747
No log 9.0323 280 0.4454 0.7059 0.4454 0.6674
No log 9.0968 282 0.4449 0.7059 0.4449 0.6670
No log 9.1613 284 0.4452 0.7059 0.4452 0.6672
No log 9.2258 286 0.4550 0.7059 0.4550 0.6746
No log 9.2903 288 0.4651 0.7319 0.4651 0.6820
No log 9.3548 290 0.4760 0.6983 0.4760 0.6899
No log 9.4194 292 0.4772 0.6983 0.4772 0.6908
No log 9.4839 294 0.4756 0.6831 0.4756 0.6897
No log 9.5484 296 0.4755 0.6831 0.4755 0.6896
No log 9.6129 298 0.4715 0.6831 0.4715 0.6867
No log 9.6774 300 0.4637 0.6831 0.4637 0.6810
No log 9.7419 302 0.4570 0.7059 0.4570 0.6760
No log 9.8065 304 0.4550 0.7059 0.4550 0.6745
No log 9.8710 306 0.4551 0.7059 0.4551 0.6746
No log 9.9355 308 0.4554 0.7059 0.4554 0.6749
No log 10.0 310 0.4553 0.7059 0.4553 0.6747

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0+cu118
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
22
Safetensors
Model size
135M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for MayBashendy/Arabic_FineTuningAraBERT_AugV0_k4_task1_organization_fold1

Finetuned
(4222)
this model