Arabic_FineTuningAraBERT_AugV0_k3_task1_organization_fold1

This model is a fine-tuned version of aubmindlab/bert-base-arabertv02 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5252
  • Qwk: 0.6831
  • Mse: 0.5252
  • Rmse: 0.7247

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Qwk Mse Rmse
No log 0.0769 2 4.7414 0.0094 4.7414 2.1775
No log 0.1538 4 3.6945 -0.0630 3.6945 1.9221
No log 0.2308 6 2.0868 0.0401 2.0868 1.4446
No log 0.3077 8 1.2520 0.3077 1.2520 1.1189
No log 0.3846 10 1.1637 0.4815 1.1637 1.0788
No log 0.4615 12 0.7045 0.3000 0.7045 0.8393
No log 0.5385 14 0.8215 0.3568 0.8215 0.9064
No log 0.6154 16 0.8136 0.1529 0.8136 0.9020
No log 0.6923 18 0.6856 0.25 0.6856 0.8280
No log 0.7692 20 0.5752 0.5969 0.5752 0.7584
No log 0.8462 22 0.5351 0.4615 0.5351 0.7315
No log 0.9231 24 0.5808 0.5532 0.5808 0.7621
No log 1.0 26 0.4474 0.58 0.4474 0.6689
No log 1.0769 28 0.4311 0.7107 0.4311 0.6566
No log 1.1538 30 0.4061 0.6778 0.4061 0.6372
No log 1.2308 32 0.4149 0.7529 0.4149 0.6441
No log 1.3077 34 0.3937 0.7529 0.3937 0.6274
No log 1.3846 36 0.3913 0.6131 0.3913 0.6256
No log 1.4615 38 0.3740 0.6244 0.3740 0.6116
No log 1.5385 40 0.3548 0.6392 0.3548 0.5956
No log 1.6154 42 0.3783 0.5926 0.3783 0.6151
No log 1.6923 44 0.3637 0.6419 0.3637 0.6030
No log 1.7692 46 0.3745 0.6903 0.3745 0.6120
No log 1.8462 48 0.3518 0.6547 0.3518 0.5932
No log 1.9231 50 0.3771 0.6351 0.3771 0.6141
No log 2.0 52 0.4806 0.5532 0.4806 0.6933
No log 2.0769 54 0.4787 0.6 0.4787 0.6919
No log 2.1538 56 0.4871 0.6379 0.4871 0.6979
No log 2.2308 58 0.4494 0.75 0.4494 0.6704
No log 2.3077 60 0.3479 0.7879 0.3479 0.5898
No log 2.3846 62 0.3272 0.7812 0.3272 0.5720
No log 2.4615 64 0.3431 0.7107 0.3431 0.5857
No log 2.5385 66 0.3516 0.7107 0.3516 0.5930
No log 2.6154 68 0.3634 0.7510 0.3634 0.6028
No log 2.6923 70 0.4125 0.7879 0.4125 0.6422
No log 2.7692 72 0.4621 0.7138 0.4621 0.6798
No log 2.8462 74 0.4865 0.6883 0.4865 0.6975
No log 2.9231 76 0.4840 0.6883 0.4840 0.6957
No log 3.0 78 0.4795 0.7138 0.4795 0.6925
No log 3.0769 80 0.4424 0.7287 0.4424 0.6651
No log 3.1538 82 0.5221 0.7445 0.5221 0.7226
No log 3.2308 84 0.5390 0.7445 0.5390 0.7342
No log 3.3077 86 0.5405 0.7605 0.5405 0.7352
No log 3.3846 88 0.4075 0.6912 0.4075 0.6384
No log 3.4615 90 0.3764 0.72 0.3764 0.6135
No log 3.5385 92 0.3895 0.6695 0.3895 0.6241
No log 3.6154 94 0.4357 0.6957 0.4357 0.6601
No log 3.6923 96 0.4902 0.6957 0.4902 0.7001
No log 3.7692 98 0.5830 0.6723 0.5830 0.7636
No log 3.8462 100 0.6878 0.5817 0.6878 0.8293
No log 3.9231 102 0.7044 0.5817 0.7044 0.8393
No log 4.0 104 0.5744 0.6585 0.5744 0.7579
No log 4.0769 106 0.4264 0.6805 0.4264 0.6530
No log 4.1538 108 0.3291 0.6778 0.3291 0.5737
No log 4.2308 110 0.3221 0.8108 0.3221 0.5675
No log 4.3077 112 0.3157 0.8158 0.3157 0.5618
No log 4.3846 114 0.3478 0.7756 0.3478 0.5898
No log 4.4615 116 0.4313 0.7729 0.4313 0.6567
No log 4.5385 118 0.6079 0.6975 0.6079 0.7797
No log 4.6154 120 0.6892 0.6478 0.6892 0.8302
No log 4.6923 122 0.6545 0.6416 0.6545 0.8090
No log 4.7692 124 0.5929 0.6693 0.5929 0.7700
No log 4.8462 126 0.4709 0.7308 0.4709 0.6862
No log 4.9231 128 0.4206 0.7072 0.4206 0.6486
No log 5.0 130 0.4094 0.7470 0.4094 0.6398
No log 5.0769 132 0.4158 0.7470 0.4158 0.6448
No log 5.1538 134 0.4594 0.6831 0.4594 0.6778
No log 5.2308 136 0.4854 0.6693 0.4854 0.6967
No log 5.3077 138 0.4632 0.6983 0.4632 0.6806
No log 5.3846 140 0.4226 0.6983 0.4226 0.6501
No log 5.4615 142 0.3758 0.6875 0.3758 0.6130
No log 5.5385 144 0.3668 0.6957 0.3668 0.6056
No log 5.6154 146 0.3792 0.6805 0.3792 0.6158
No log 5.6923 148 0.4151 0.6983 0.4151 0.6443
No log 5.7692 150 0.4178 0.7605 0.4178 0.6464
No log 5.8462 152 0.3982 0.7552 0.3982 0.6310
No log 5.9231 154 0.3888 0.7390 0.3888 0.6235
No log 6.0 156 0.3649 0.8 0.3649 0.6041
No log 6.0769 158 0.3891 0.7853 0.3891 0.6237
No log 6.1538 160 0.3996 0.7853 0.3996 0.6321
No log 6.2308 162 0.4432 0.7552 0.4432 0.6657
No log 6.3077 164 0.5074 0.6934 0.5074 0.7123
No log 6.3846 166 0.5805 0.6038 0.5805 0.7619
No log 6.4615 168 0.6236 0.6038 0.6236 0.7897
No log 6.5385 170 0.5972 0.6038 0.5972 0.7728
No log 6.6154 172 0.5400 0.6459 0.5400 0.7348
No log 6.6923 174 0.4601 0.6805 0.4601 0.6783
No log 6.7692 176 0.4254 0.6805 0.4254 0.6523
No log 6.8462 178 0.4306 0.6805 0.4306 0.6562
No log 6.9231 180 0.4642 0.6908 0.4642 0.6813
No log 7.0 182 0.4626 0.7298 0.4626 0.6802
No log 7.0769 184 0.5103 0.7298 0.5103 0.7144
No log 7.1538 186 0.5553 0.6729 0.5553 0.7452
No log 7.2308 188 0.5391 0.6729 0.5391 0.7343
No log 7.3077 190 0.4822 0.7298 0.4822 0.6944
No log 7.3846 192 0.4320 0.7308 0.4320 0.6573
No log 7.4615 194 0.4199 0.7059 0.4199 0.6480
No log 7.5385 196 0.4131 0.6805 0.4131 0.6427
No log 7.6154 198 0.4304 0.6805 0.4304 0.6560
No log 7.6923 200 0.4307 0.6805 0.4307 0.6563
No log 7.7692 202 0.4450 0.6805 0.4450 0.6671
No log 7.8462 204 0.4610 0.6667 0.4610 0.6790
No log 7.9231 206 0.4839 0.6667 0.4839 0.6956
No log 8.0 208 0.5376 0.6693 0.5376 0.7332
No log 8.0769 210 0.5565 0.6693 0.5565 0.7460
No log 8.1538 212 0.5628 0.6693 0.5628 0.7502
No log 8.2308 214 0.5518 0.6693 0.5518 0.7428
No log 8.3077 216 0.5127 0.7154 0.5127 0.7160
No log 8.3846 218 0.4803 0.6715 0.4803 0.6930
No log 8.4615 220 0.4713 0.6715 0.4713 0.6865
No log 8.5385 222 0.4447 0.7279 0.4447 0.6669
No log 8.6154 224 0.4316 0.7279 0.4316 0.6569
No log 8.6923 226 0.4265 0.7287 0.4265 0.6530
No log 8.7692 228 0.4349 0.6805 0.4349 0.6595
No log 8.8462 230 0.4617 0.6715 0.4617 0.6795
No log 8.9231 232 0.4827 0.7159 0.4827 0.6948
No log 9.0 234 0.5241 0.6416 0.5241 0.7239
No log 9.0769 236 0.5699 0.6316 0.5699 0.7549
No log 9.1538 238 0.5924 0.6316 0.5924 0.7697
No log 9.2308 240 0.5938 0.6316 0.5938 0.7706
No log 9.3077 242 0.5819 0.6316 0.5819 0.7628
No log 9.3846 244 0.5639 0.6316 0.5639 0.7510
No log 9.4615 246 0.5558 0.6316 0.5558 0.7455
No log 9.5385 248 0.5487 0.6316 0.5487 0.7407
No log 9.6154 250 0.5415 0.6693 0.5415 0.7358
No log 9.6923 252 0.5343 0.6831 0.5343 0.7309
No log 9.7692 254 0.5288 0.6831 0.5288 0.7272
No log 9.8462 256 0.5262 0.6831 0.5262 0.7254
No log 9.9231 258 0.5255 0.6831 0.5255 0.7249
No log 10.0 260 0.5252 0.6831 0.5252 0.7247

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0+cu118
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
24
Safetensors
Model size
135M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for MayBashendy/Arabic_FineTuningAraBERT_AugV0_k3_task1_organization_fold1

Finetuned
(4222)
this model