Arabic_FineTuningAraBERT_AugV0_k3_task1_organization_fold1
This model is a fine-tuned version of aubmindlab/bert-base-arabertv02 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.5252
- Qwk: 0.6831
- Mse: 0.5252
- Rmse: 0.7247
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse |
---|---|---|---|---|---|---|
No log | 0.0769 | 2 | 4.7414 | 0.0094 | 4.7414 | 2.1775 |
No log | 0.1538 | 4 | 3.6945 | -0.0630 | 3.6945 | 1.9221 |
No log | 0.2308 | 6 | 2.0868 | 0.0401 | 2.0868 | 1.4446 |
No log | 0.3077 | 8 | 1.2520 | 0.3077 | 1.2520 | 1.1189 |
No log | 0.3846 | 10 | 1.1637 | 0.4815 | 1.1637 | 1.0788 |
No log | 0.4615 | 12 | 0.7045 | 0.3000 | 0.7045 | 0.8393 |
No log | 0.5385 | 14 | 0.8215 | 0.3568 | 0.8215 | 0.9064 |
No log | 0.6154 | 16 | 0.8136 | 0.1529 | 0.8136 | 0.9020 |
No log | 0.6923 | 18 | 0.6856 | 0.25 | 0.6856 | 0.8280 |
No log | 0.7692 | 20 | 0.5752 | 0.5969 | 0.5752 | 0.7584 |
No log | 0.8462 | 22 | 0.5351 | 0.4615 | 0.5351 | 0.7315 |
No log | 0.9231 | 24 | 0.5808 | 0.5532 | 0.5808 | 0.7621 |
No log | 1.0 | 26 | 0.4474 | 0.58 | 0.4474 | 0.6689 |
No log | 1.0769 | 28 | 0.4311 | 0.7107 | 0.4311 | 0.6566 |
No log | 1.1538 | 30 | 0.4061 | 0.6778 | 0.4061 | 0.6372 |
No log | 1.2308 | 32 | 0.4149 | 0.7529 | 0.4149 | 0.6441 |
No log | 1.3077 | 34 | 0.3937 | 0.7529 | 0.3937 | 0.6274 |
No log | 1.3846 | 36 | 0.3913 | 0.6131 | 0.3913 | 0.6256 |
No log | 1.4615 | 38 | 0.3740 | 0.6244 | 0.3740 | 0.6116 |
No log | 1.5385 | 40 | 0.3548 | 0.6392 | 0.3548 | 0.5956 |
No log | 1.6154 | 42 | 0.3783 | 0.5926 | 0.3783 | 0.6151 |
No log | 1.6923 | 44 | 0.3637 | 0.6419 | 0.3637 | 0.6030 |
No log | 1.7692 | 46 | 0.3745 | 0.6903 | 0.3745 | 0.6120 |
No log | 1.8462 | 48 | 0.3518 | 0.6547 | 0.3518 | 0.5932 |
No log | 1.9231 | 50 | 0.3771 | 0.6351 | 0.3771 | 0.6141 |
No log | 2.0 | 52 | 0.4806 | 0.5532 | 0.4806 | 0.6933 |
No log | 2.0769 | 54 | 0.4787 | 0.6 | 0.4787 | 0.6919 |
No log | 2.1538 | 56 | 0.4871 | 0.6379 | 0.4871 | 0.6979 |
No log | 2.2308 | 58 | 0.4494 | 0.75 | 0.4494 | 0.6704 |
No log | 2.3077 | 60 | 0.3479 | 0.7879 | 0.3479 | 0.5898 |
No log | 2.3846 | 62 | 0.3272 | 0.7812 | 0.3272 | 0.5720 |
No log | 2.4615 | 64 | 0.3431 | 0.7107 | 0.3431 | 0.5857 |
No log | 2.5385 | 66 | 0.3516 | 0.7107 | 0.3516 | 0.5930 |
No log | 2.6154 | 68 | 0.3634 | 0.7510 | 0.3634 | 0.6028 |
No log | 2.6923 | 70 | 0.4125 | 0.7879 | 0.4125 | 0.6422 |
No log | 2.7692 | 72 | 0.4621 | 0.7138 | 0.4621 | 0.6798 |
No log | 2.8462 | 74 | 0.4865 | 0.6883 | 0.4865 | 0.6975 |
No log | 2.9231 | 76 | 0.4840 | 0.6883 | 0.4840 | 0.6957 |
No log | 3.0 | 78 | 0.4795 | 0.7138 | 0.4795 | 0.6925 |
No log | 3.0769 | 80 | 0.4424 | 0.7287 | 0.4424 | 0.6651 |
No log | 3.1538 | 82 | 0.5221 | 0.7445 | 0.5221 | 0.7226 |
No log | 3.2308 | 84 | 0.5390 | 0.7445 | 0.5390 | 0.7342 |
No log | 3.3077 | 86 | 0.5405 | 0.7605 | 0.5405 | 0.7352 |
No log | 3.3846 | 88 | 0.4075 | 0.6912 | 0.4075 | 0.6384 |
No log | 3.4615 | 90 | 0.3764 | 0.72 | 0.3764 | 0.6135 |
No log | 3.5385 | 92 | 0.3895 | 0.6695 | 0.3895 | 0.6241 |
No log | 3.6154 | 94 | 0.4357 | 0.6957 | 0.4357 | 0.6601 |
No log | 3.6923 | 96 | 0.4902 | 0.6957 | 0.4902 | 0.7001 |
No log | 3.7692 | 98 | 0.5830 | 0.6723 | 0.5830 | 0.7636 |
No log | 3.8462 | 100 | 0.6878 | 0.5817 | 0.6878 | 0.8293 |
No log | 3.9231 | 102 | 0.7044 | 0.5817 | 0.7044 | 0.8393 |
No log | 4.0 | 104 | 0.5744 | 0.6585 | 0.5744 | 0.7579 |
No log | 4.0769 | 106 | 0.4264 | 0.6805 | 0.4264 | 0.6530 |
No log | 4.1538 | 108 | 0.3291 | 0.6778 | 0.3291 | 0.5737 |
No log | 4.2308 | 110 | 0.3221 | 0.8108 | 0.3221 | 0.5675 |
No log | 4.3077 | 112 | 0.3157 | 0.8158 | 0.3157 | 0.5618 |
No log | 4.3846 | 114 | 0.3478 | 0.7756 | 0.3478 | 0.5898 |
No log | 4.4615 | 116 | 0.4313 | 0.7729 | 0.4313 | 0.6567 |
No log | 4.5385 | 118 | 0.6079 | 0.6975 | 0.6079 | 0.7797 |
No log | 4.6154 | 120 | 0.6892 | 0.6478 | 0.6892 | 0.8302 |
No log | 4.6923 | 122 | 0.6545 | 0.6416 | 0.6545 | 0.8090 |
No log | 4.7692 | 124 | 0.5929 | 0.6693 | 0.5929 | 0.7700 |
No log | 4.8462 | 126 | 0.4709 | 0.7308 | 0.4709 | 0.6862 |
No log | 4.9231 | 128 | 0.4206 | 0.7072 | 0.4206 | 0.6486 |
No log | 5.0 | 130 | 0.4094 | 0.7470 | 0.4094 | 0.6398 |
No log | 5.0769 | 132 | 0.4158 | 0.7470 | 0.4158 | 0.6448 |
No log | 5.1538 | 134 | 0.4594 | 0.6831 | 0.4594 | 0.6778 |
No log | 5.2308 | 136 | 0.4854 | 0.6693 | 0.4854 | 0.6967 |
No log | 5.3077 | 138 | 0.4632 | 0.6983 | 0.4632 | 0.6806 |
No log | 5.3846 | 140 | 0.4226 | 0.6983 | 0.4226 | 0.6501 |
No log | 5.4615 | 142 | 0.3758 | 0.6875 | 0.3758 | 0.6130 |
No log | 5.5385 | 144 | 0.3668 | 0.6957 | 0.3668 | 0.6056 |
No log | 5.6154 | 146 | 0.3792 | 0.6805 | 0.3792 | 0.6158 |
No log | 5.6923 | 148 | 0.4151 | 0.6983 | 0.4151 | 0.6443 |
No log | 5.7692 | 150 | 0.4178 | 0.7605 | 0.4178 | 0.6464 |
No log | 5.8462 | 152 | 0.3982 | 0.7552 | 0.3982 | 0.6310 |
No log | 5.9231 | 154 | 0.3888 | 0.7390 | 0.3888 | 0.6235 |
No log | 6.0 | 156 | 0.3649 | 0.8 | 0.3649 | 0.6041 |
No log | 6.0769 | 158 | 0.3891 | 0.7853 | 0.3891 | 0.6237 |
No log | 6.1538 | 160 | 0.3996 | 0.7853 | 0.3996 | 0.6321 |
No log | 6.2308 | 162 | 0.4432 | 0.7552 | 0.4432 | 0.6657 |
No log | 6.3077 | 164 | 0.5074 | 0.6934 | 0.5074 | 0.7123 |
No log | 6.3846 | 166 | 0.5805 | 0.6038 | 0.5805 | 0.7619 |
No log | 6.4615 | 168 | 0.6236 | 0.6038 | 0.6236 | 0.7897 |
No log | 6.5385 | 170 | 0.5972 | 0.6038 | 0.5972 | 0.7728 |
No log | 6.6154 | 172 | 0.5400 | 0.6459 | 0.5400 | 0.7348 |
No log | 6.6923 | 174 | 0.4601 | 0.6805 | 0.4601 | 0.6783 |
No log | 6.7692 | 176 | 0.4254 | 0.6805 | 0.4254 | 0.6523 |
No log | 6.8462 | 178 | 0.4306 | 0.6805 | 0.4306 | 0.6562 |
No log | 6.9231 | 180 | 0.4642 | 0.6908 | 0.4642 | 0.6813 |
No log | 7.0 | 182 | 0.4626 | 0.7298 | 0.4626 | 0.6802 |
No log | 7.0769 | 184 | 0.5103 | 0.7298 | 0.5103 | 0.7144 |
No log | 7.1538 | 186 | 0.5553 | 0.6729 | 0.5553 | 0.7452 |
No log | 7.2308 | 188 | 0.5391 | 0.6729 | 0.5391 | 0.7343 |
No log | 7.3077 | 190 | 0.4822 | 0.7298 | 0.4822 | 0.6944 |
No log | 7.3846 | 192 | 0.4320 | 0.7308 | 0.4320 | 0.6573 |
No log | 7.4615 | 194 | 0.4199 | 0.7059 | 0.4199 | 0.6480 |
No log | 7.5385 | 196 | 0.4131 | 0.6805 | 0.4131 | 0.6427 |
No log | 7.6154 | 198 | 0.4304 | 0.6805 | 0.4304 | 0.6560 |
No log | 7.6923 | 200 | 0.4307 | 0.6805 | 0.4307 | 0.6563 |
No log | 7.7692 | 202 | 0.4450 | 0.6805 | 0.4450 | 0.6671 |
No log | 7.8462 | 204 | 0.4610 | 0.6667 | 0.4610 | 0.6790 |
No log | 7.9231 | 206 | 0.4839 | 0.6667 | 0.4839 | 0.6956 |
No log | 8.0 | 208 | 0.5376 | 0.6693 | 0.5376 | 0.7332 |
No log | 8.0769 | 210 | 0.5565 | 0.6693 | 0.5565 | 0.7460 |
No log | 8.1538 | 212 | 0.5628 | 0.6693 | 0.5628 | 0.7502 |
No log | 8.2308 | 214 | 0.5518 | 0.6693 | 0.5518 | 0.7428 |
No log | 8.3077 | 216 | 0.5127 | 0.7154 | 0.5127 | 0.7160 |
No log | 8.3846 | 218 | 0.4803 | 0.6715 | 0.4803 | 0.6930 |
No log | 8.4615 | 220 | 0.4713 | 0.6715 | 0.4713 | 0.6865 |
No log | 8.5385 | 222 | 0.4447 | 0.7279 | 0.4447 | 0.6669 |
No log | 8.6154 | 224 | 0.4316 | 0.7279 | 0.4316 | 0.6569 |
No log | 8.6923 | 226 | 0.4265 | 0.7287 | 0.4265 | 0.6530 |
No log | 8.7692 | 228 | 0.4349 | 0.6805 | 0.4349 | 0.6595 |
No log | 8.8462 | 230 | 0.4617 | 0.6715 | 0.4617 | 0.6795 |
No log | 8.9231 | 232 | 0.4827 | 0.7159 | 0.4827 | 0.6948 |
No log | 9.0 | 234 | 0.5241 | 0.6416 | 0.5241 | 0.7239 |
No log | 9.0769 | 236 | 0.5699 | 0.6316 | 0.5699 | 0.7549 |
No log | 9.1538 | 238 | 0.5924 | 0.6316 | 0.5924 | 0.7697 |
No log | 9.2308 | 240 | 0.5938 | 0.6316 | 0.5938 | 0.7706 |
No log | 9.3077 | 242 | 0.5819 | 0.6316 | 0.5819 | 0.7628 |
No log | 9.3846 | 244 | 0.5639 | 0.6316 | 0.5639 | 0.7510 |
No log | 9.4615 | 246 | 0.5558 | 0.6316 | 0.5558 | 0.7455 |
No log | 9.5385 | 248 | 0.5487 | 0.6316 | 0.5487 | 0.7407 |
No log | 9.6154 | 250 | 0.5415 | 0.6693 | 0.5415 | 0.7358 |
No log | 9.6923 | 252 | 0.5343 | 0.6831 | 0.5343 | 0.7309 |
No log | 9.7692 | 254 | 0.5288 | 0.6831 | 0.5288 | 0.7272 |
No log | 9.8462 | 256 | 0.5262 | 0.6831 | 0.5262 | 0.7254 |
No log | 9.9231 | 258 | 0.5255 | 0.6831 | 0.5255 | 0.7249 |
No log | 10.0 | 260 | 0.5252 | 0.6831 | 0.5252 | 0.7247 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.0+cu118
- Datasets 2.21.0
- Tokenizers 0.19.1
- Downloads last month
- 24
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for MayBashendy/Arabic_FineTuningAraBERT_AugV0_k3_task1_organization_fold1
Base model
aubmindlab/bert-base-arabertv02