MayBashendy commited on
Commit
fbf30a3
·
verified ·
1 Parent(s): adc0939

Training in progress, step 500

Browse files
Files changed (4) hide show
  1. README.md +349 -0
  2. config.json +32 -0
  3. model.safetensors +3 -0
  4. training_args.bin +3 -0
README.md ADDED
@@ -0,0 +1,349 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ base_model: aubmindlab/bert-base-arabertv02
4
+ tags:
5
+ - generated_from_trainer
6
+ model-index:
7
+ - name: Arabic_FineTuningAraBERT_AugV0_k10_task1_organization_fold1
8
+ results: []
9
+ ---
10
+
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
+
14
+ # Arabic_FineTuningAraBERT_AugV0_k10_task1_organization_fold1
15
+
16
+ This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset.
17
+ It achieves the following results on the evaluation set:
18
+ - Loss: 0.4748
19
+ - Qwk: 0.7083
20
+ - Mse: 0.4748
21
+ - Rmse: 0.6890
22
+
23
+ ## Model description
24
+
25
+ More information needed
26
+
27
+ ## Intended uses & limitations
28
+
29
+ More information needed
30
+
31
+ ## Training and evaluation data
32
+
33
+ More information needed
34
+
35
+ ## Training procedure
36
+
37
+ ### Training hyperparameters
38
+
39
+ The following hyperparameters were used during training:
40
+ - learning_rate: 2e-05
41
+ - train_batch_size: 8
42
+ - eval_batch_size: 8
43
+ - seed: 42
44
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
45
+ - lr_scheduler_type: linear
46
+ - num_epochs: 10
47
+
48
+ ### Training results
49
+
50
+ | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse |
51
+ |:-------------:|:------:|:----:|:---------------:|:-------:|:------:|:------:|
52
+ | No log | 0.0345 | 2 | 6.4326 | 0.0 | 6.4326 | 2.5363 |
53
+ | No log | 0.0690 | 4 | 3.8135 | -0.0354 | 3.8135 | 1.9528 |
54
+ | No log | 0.1034 | 6 | 1.9660 | 0.0484 | 1.9660 | 1.4021 |
55
+ | No log | 0.1379 | 8 | 1.2319 | 0.1615 | 1.2319 | 1.1099 |
56
+ | No log | 0.1724 | 10 | 0.8155 | 0.2441 | 0.8155 | 0.9031 |
57
+ | No log | 0.2069 | 12 | 0.7117 | 0.3578 | 0.7117 | 0.8436 |
58
+ | No log | 0.2414 | 14 | 1.2811 | 0.1446 | 1.2811 | 1.1319 |
59
+ | No log | 0.2759 | 16 | 1.1528 | 0.1446 | 1.1528 | 1.0737 |
60
+ | No log | 0.3103 | 18 | 0.7117 | 0.2881 | 0.7117 | 0.8436 |
61
+ | No log | 0.3448 | 20 | 0.9515 | 0.4302 | 0.9515 | 0.9755 |
62
+ | No log | 0.3793 | 22 | 1.1689 | 0.0637 | 1.1689 | 1.0811 |
63
+ | No log | 0.4138 | 24 | 1.1253 | 0.125 | 1.1253 | 1.0608 |
64
+ | No log | 0.4483 | 26 | 0.9650 | 0.3708 | 0.9650 | 0.9823 |
65
+ | No log | 0.4828 | 28 | 0.8320 | 0.3069 | 0.8320 | 0.9121 |
66
+ | No log | 0.5172 | 30 | 0.7790 | 0.2829 | 0.7790 | 0.8826 |
67
+ | No log | 0.5517 | 32 | 0.7426 | 0.2829 | 0.7426 | 0.8617 |
68
+ | No log | 0.5862 | 34 | 0.6842 | 0.3069 | 0.6842 | 0.8272 |
69
+ | No log | 0.6207 | 36 | 0.6440 | 0.4020 | 0.6440 | 0.8025 |
70
+ | No log | 0.6552 | 38 | 0.6619 | 0.5134 | 0.6619 | 0.8136 |
71
+ | No log | 0.6897 | 40 | 0.6339 | 0.5134 | 0.6339 | 0.7962 |
72
+ | No log | 0.7241 | 42 | 0.5804 | 0.5134 | 0.5804 | 0.7618 |
73
+ | No log | 0.7586 | 44 | 0.5364 | 0.5473 | 0.5364 | 0.7324 |
74
+ | No log | 0.7931 | 46 | 0.6324 | 0.5435 | 0.6324 | 0.7952 |
75
+ | No log | 0.8276 | 48 | 0.6262 | 0.6051 | 0.6262 | 0.7913 |
76
+ | No log | 0.8621 | 50 | 0.4913 | 0.5249 | 0.4913 | 0.7009 |
77
+ | No log | 0.8966 | 52 | 0.4772 | 0.5643 | 0.4772 | 0.6908 |
78
+ | No log | 0.9310 | 54 | 0.5364 | 0.5128 | 0.5364 | 0.7324 |
79
+ | No log | 0.9655 | 56 | 0.5079 | 0.5128 | 0.5079 | 0.7127 |
80
+ | No log | 1.0 | 58 | 0.4561 | 0.5643 | 0.4561 | 0.6753 |
81
+ | No log | 1.0345 | 60 | 0.5102 | 0.5532 | 0.5102 | 0.7143 |
82
+ | No log | 1.0690 | 62 | 0.6207 | 0.5767 | 0.6207 | 0.7878 |
83
+ | No log | 1.1034 | 64 | 0.5857 | 0.6379 | 0.5857 | 0.7653 |
84
+ | No log | 1.1379 | 66 | 0.4640 | 0.5882 | 0.4640 | 0.6812 |
85
+ | No log | 1.1724 | 68 | 0.5248 | 0.3970 | 0.5248 | 0.7244 |
86
+ | No log | 1.2069 | 70 | 0.4946 | 0.4400 | 0.4946 | 0.7033 |
87
+ | No log | 1.2414 | 72 | 0.5801 | 0.6169 | 0.5801 | 0.7616 |
88
+ | No log | 1.2759 | 74 | 0.6230 | 0.6169 | 0.6230 | 0.7893 |
89
+ | No log | 1.3103 | 76 | 0.6160 | 0.6147 | 0.6160 | 0.7848 |
90
+ | No log | 1.3448 | 78 | 0.5401 | 0.6147 | 0.5401 | 0.7349 |
91
+ | No log | 1.3793 | 80 | 0.4884 | 0.5000 | 0.4884 | 0.6988 |
92
+ | No log | 1.4138 | 82 | 0.4945 | 0.5000 | 0.4945 | 0.7032 |
93
+ | No log | 1.4483 | 84 | 0.5724 | 0.6147 | 0.5724 | 0.7566 |
94
+ | No log | 1.4828 | 86 | 0.5897 | 0.5249 | 0.5897 | 0.7679 |
95
+ | No log | 1.5172 | 88 | 0.5509 | 0.5116 | 0.5509 | 0.7422 |
96
+ | No log | 1.5517 | 90 | 0.5406 | 0.5116 | 0.5406 | 0.7353 |
97
+ | No log | 1.5862 | 92 | 0.5704 | 0.5882 | 0.5704 | 0.7552 |
98
+ | No log | 1.6207 | 94 | 0.5940 | 0.5249 | 0.5940 | 0.7707 |
99
+ | No log | 1.6552 | 96 | 0.6004 | 0.5249 | 0.6004 | 0.7748 |
100
+ | No log | 1.6897 | 98 | 0.6200 | 0.6169 | 0.6200 | 0.7874 |
101
+ | No log | 1.7241 | 100 | 0.6235 | 0.6169 | 0.6235 | 0.7896 |
102
+ | No log | 1.7586 | 102 | 0.5713 | 0.5196 | 0.5713 | 0.7558 |
103
+ | No log | 1.7931 | 104 | 0.5276 | 0.5196 | 0.5276 | 0.7264 |
104
+ | No log | 1.8276 | 106 | 0.4860 | 0.5000 | 0.4860 | 0.6972 |
105
+ | No log | 1.8621 | 108 | 0.5072 | 0.5249 | 0.5072 | 0.7122 |
106
+ | No log | 1.8966 | 110 | 0.5614 | 0.6169 | 0.5614 | 0.7493 |
107
+ | No log | 1.9310 | 112 | 0.4983 | 0.5249 | 0.4983 | 0.7059 |
108
+ | No log | 1.9655 | 114 | 0.4296 | 0.5410 | 0.4296 | 0.6555 |
109
+ | No log | 2.0 | 116 | 0.4915 | 0.6263 | 0.4915 | 0.7011 |
110
+ | No log | 2.0345 | 118 | 0.4815 | 0.5977 | 0.4815 | 0.6939 |
111
+ | No log | 2.0690 | 120 | 0.4535 | 0.5643 | 0.4535 | 0.6734 |
112
+ | No log | 2.1034 | 122 | 0.4536 | 0.5882 | 0.4536 | 0.6735 |
113
+ | No log | 2.1379 | 124 | 0.4410 | 0.5643 | 0.4410 | 0.6641 |
114
+ | No log | 2.1724 | 126 | 0.4449 | 0.5625 | 0.4449 | 0.6670 |
115
+ | No log | 2.2069 | 128 | 0.4233 | 0.5410 | 0.4233 | 0.6506 |
116
+ | No log | 2.2414 | 130 | 0.4230 | 0.5410 | 0.4230 | 0.6504 |
117
+ | No log | 2.2759 | 132 | 0.4226 | 0.5749 | 0.4226 | 0.6501 |
118
+ | No log | 2.3103 | 134 | 0.4312 | 0.5625 | 0.4312 | 0.6567 |
119
+ | No log | 2.3448 | 136 | 0.5654 | 0.5758 | 0.5654 | 0.7519 |
120
+ | No log | 2.3793 | 138 | 0.6740 | 0.5758 | 0.6740 | 0.8209 |
121
+ | No log | 2.4138 | 140 | 0.6602 | 0.5758 | 0.6602 | 0.8126 |
122
+ | No log | 2.4483 | 142 | 0.5267 | 0.6169 | 0.5267 | 0.7257 |
123
+ | No log | 2.4828 | 144 | 0.4491 | 0.5249 | 0.4491 | 0.6701 |
124
+ | No log | 2.5172 | 146 | 0.4430 | 0.5249 | 0.4430 | 0.6656 |
125
+ | No log | 2.5517 | 148 | 0.4880 | 0.6147 | 0.4880 | 0.6985 |
126
+ | No log | 2.5862 | 150 | 0.5764 | 0.6026 | 0.5764 | 0.7592 |
127
+ | No log | 2.6207 | 152 | 0.5792 | 0.6500 | 0.5792 | 0.7611 |
128
+ | No log | 2.6552 | 154 | 0.4639 | 0.6723 | 0.4639 | 0.6811 |
129
+ | No log | 2.6897 | 156 | 0.4261 | 0.5882 | 0.4261 | 0.6528 |
130
+ | No log | 2.7241 | 158 | 0.4611 | 0.6723 | 0.4611 | 0.6790 |
131
+ | No log | 2.7586 | 160 | 0.5689 | 0.7328 | 0.5688 | 0.7542 |
132
+ | No log | 2.7931 | 162 | 0.5806 | 0.6932 | 0.5806 | 0.7620 |
133
+ | No log | 2.8276 | 164 | 0.6100 | 0.6038 | 0.6100 | 0.7810 |
134
+ | No log | 2.8621 | 166 | 0.6949 | 0.6038 | 0.6949 | 0.8336 |
135
+ | No log | 2.8966 | 168 | 0.7650 | 0.5185 | 0.7650 | 0.8747 |
136
+ | No log | 2.9310 | 170 | 0.7460 | 0.5746 | 0.7460 | 0.8637 |
137
+ | No log | 2.9655 | 172 | 0.7676 | 0.5625 | 0.7676 | 0.8761 |
138
+ | No log | 3.0 | 174 | 0.7922 | 0.5185 | 0.7922 | 0.8900 |
139
+ | No log | 3.0345 | 176 | 0.7290 | 0.5435 | 0.7290 | 0.8538 |
140
+ | No log | 3.0690 | 178 | 0.6437 | 0.5435 | 0.6437 | 0.8023 |
141
+ | No log | 3.1034 | 180 | 0.7142 | 0.6051 | 0.7142 | 0.8451 |
142
+ | No log | 3.1379 | 182 | 0.6795 | 0.6051 | 0.6795 | 0.8243 |
143
+ | No log | 3.1724 | 184 | 0.5251 | 0.6169 | 0.5251 | 0.7247 |
144
+ | No log | 3.2069 | 186 | 0.4719 | 0.6147 | 0.4719 | 0.6870 |
145
+ | No log | 3.2414 | 188 | 0.4901 | 0.6638 | 0.4901 | 0.7001 |
146
+ | No log | 3.2759 | 190 | 0.6328 | 0.7027 | 0.6328 | 0.7955 |
147
+ | No log | 3.3103 | 192 | 0.7086 | 0.7042 | 0.7086 | 0.8418 |
148
+ | No log | 3.3448 | 194 | 0.7227 | 0.7042 | 0.7227 | 0.8501 |
149
+ | No log | 3.3793 | 196 | 0.6044 | 0.7094 | 0.6044 | 0.7774 |
150
+ | No log | 3.4138 | 198 | 0.4880 | 0.7388 | 0.4880 | 0.6986 |
151
+ | No log | 3.4483 | 200 | 0.4088 | 0.6723 | 0.4088 | 0.6394 |
152
+ | No log | 3.4828 | 202 | 0.3947 | 0.5991 | 0.3947 | 0.6282 |
153
+ | No log | 3.5172 | 204 | 0.4186 | 0.5882 | 0.4186 | 0.6470 |
154
+ | No log | 3.5517 | 206 | 0.5378 | 0.5377 | 0.5378 | 0.7334 |
155
+ | No log | 3.5862 | 208 | 0.8004 | 0.6847 | 0.8004 | 0.8947 |
156
+ | No log | 3.6207 | 210 | 1.0226 | 0.6128 | 1.0226 | 1.0112 |
157
+ | No log | 3.6552 | 212 | 0.9860 | 0.625 | 0.9860 | 0.9930 |
158
+ | No log | 3.6897 | 214 | 0.7997 | 0.51 | 0.7997 | 0.8943 |
159
+ | No log | 3.7241 | 216 | 0.5946 | 0.5435 | 0.5946 | 0.7711 |
160
+ | No log | 3.7586 | 218 | 0.5150 | 0.5473 | 0.5150 | 0.7177 |
161
+ | No log | 3.7931 | 220 | 0.4997 | 0.6147 | 0.4997 | 0.7069 |
162
+ | No log | 3.8276 | 222 | 0.5026 | 0.6147 | 0.5026 | 0.7089 |
163
+ | No log | 3.8621 | 224 | 0.5443 | 0.6026 | 0.5443 | 0.7377 |
164
+ | No log | 3.8966 | 226 | 0.5488 | 0.6500 | 0.5488 | 0.7408 |
165
+ | No log | 3.9310 | 228 | 0.4724 | 0.6026 | 0.4724 | 0.6873 |
166
+ | No log | 3.9655 | 230 | 0.4409 | 0.5679 | 0.4409 | 0.6640 |
167
+ | No log | 4.0 | 232 | 0.4197 | 0.5776 | 0.4197 | 0.6479 |
168
+ | No log | 4.0345 | 234 | 0.4301 | 0.6142 | 0.4301 | 0.6558 |
169
+ | No log | 4.0690 | 236 | 0.4400 | 0.6142 | 0.4400 | 0.6633 |
170
+ | No log | 4.1034 | 238 | 0.4367 | 0.6142 | 0.4367 | 0.6609 |
171
+ | No log | 4.1379 | 240 | 0.4383 | 0.6566 | 0.4383 | 0.6620 |
172
+ | No log | 4.1724 | 242 | 0.4055 | 0.6111 | 0.4055 | 0.6368 |
173
+ | No log | 4.2069 | 244 | 0.4070 | 0.6345 | 0.4070 | 0.6380 |
174
+ | No log | 4.2414 | 246 | 0.4432 | 0.7328 | 0.4432 | 0.6657 |
175
+ | No log | 4.2759 | 248 | 0.4889 | 0.7328 | 0.4889 | 0.6992 |
176
+ | No log | 4.3103 | 250 | 0.4451 | 0.6932 | 0.4451 | 0.6671 |
177
+ | No log | 4.3448 | 252 | 0.4025 | 0.7154 | 0.4025 | 0.6344 |
178
+ | No log | 4.3793 | 254 | 0.3853 | 0.6345 | 0.3853 | 0.6207 |
179
+ | No log | 4.4138 | 256 | 0.3916 | 0.7154 | 0.3916 | 0.6258 |
180
+ | No log | 4.4483 | 258 | 0.4323 | 0.7154 | 0.4323 | 0.6575 |
181
+ | No log | 4.4828 | 260 | 0.4863 | 0.6932 | 0.4863 | 0.6974 |
182
+ | No log | 4.5172 | 262 | 0.4852 | 0.6500 | 0.4852 | 0.6965 |
183
+ | No log | 4.5517 | 264 | 0.4550 | 0.6500 | 0.4550 | 0.6746 |
184
+ | No log | 4.5862 | 266 | 0.4054 | 0.7154 | 0.4054 | 0.6367 |
185
+ | No log | 4.6207 | 268 | 0.3817 | 0.7154 | 0.3817 | 0.6178 |
186
+ | No log | 4.6552 | 270 | 0.3862 | 0.7154 | 0.3862 | 0.6214 |
187
+ | No log | 4.6897 | 272 | 0.4235 | 0.7154 | 0.4235 | 0.6508 |
188
+ | No log | 4.7241 | 274 | 0.5088 | 0.6932 | 0.5088 | 0.7133 |
189
+ | No log | 4.7586 | 276 | 0.5702 | 0.7328 | 0.5702 | 0.7551 |
190
+ | No log | 4.7931 | 278 | 0.6107 | 0.7692 | 0.6107 | 0.7814 |
191
+ | No log | 4.8276 | 280 | 0.5508 | 0.7328 | 0.5508 | 0.7422 |
192
+ | No log | 4.8621 | 282 | 0.4925 | 0.6638 | 0.4925 | 0.7018 |
193
+ | No log | 4.8966 | 284 | 0.5008 | 0.6638 | 0.5008 | 0.7077 |
194
+ | No log | 4.9310 | 286 | 0.5614 | 0.6932 | 0.5614 | 0.7493 |
195
+ | No log | 4.9655 | 288 | 0.6698 | 0.7407 | 0.6698 | 0.8184 |
196
+ | No log | 5.0 | 290 | 0.7127 | 0.7348 | 0.7127 | 0.8442 |
197
+ | No log | 5.0345 | 292 | 0.6634 | 0.6719 | 0.6634 | 0.8145 |
198
+ | No log | 5.0690 | 294 | 0.5348 | 0.6638 | 0.5348 | 0.7313 |
199
+ | No log | 5.1034 | 296 | 0.4584 | 0.6638 | 0.4584 | 0.6771 |
200
+ | No log | 5.1379 | 298 | 0.4463 | 0.6638 | 0.4463 | 0.6680 |
201
+ | No log | 5.1724 | 300 | 0.4785 | 0.6638 | 0.4785 | 0.6917 |
202
+ | No log | 5.2069 | 302 | 0.5912 | 0.6932 | 0.5912 | 0.7689 |
203
+ | No log | 5.2414 | 304 | 0.6691 | 0.6719 | 0.6691 | 0.8180 |
204
+ | No log | 5.2759 | 306 | 0.5976 | 0.6613 | 0.5976 | 0.7730 |
205
+ | No log | 5.3103 | 308 | 0.4708 | 0.7083 | 0.4708 | 0.6861 |
206
+ | No log | 5.3448 | 310 | 0.4168 | 0.6638 | 0.4168 | 0.6456 |
207
+ | No log | 5.3793 | 312 | 0.4083 | 0.6111 | 0.4083 | 0.6390 |
208
+ | No log | 5.4138 | 314 | 0.4177 | 0.6345 | 0.4177 | 0.6463 |
209
+ | No log | 5.4483 | 316 | 0.4585 | 0.7083 | 0.4585 | 0.6771 |
210
+ | No log | 5.4828 | 318 | 0.5169 | 0.7490 | 0.5169 | 0.7189 |
211
+ | No log | 5.5172 | 320 | 0.5532 | 0.7490 | 0.5532 | 0.7437 |
212
+ | No log | 5.5517 | 322 | 0.5349 | 0.7083 | 0.5349 | 0.7314 |
213
+ | No log | 5.5862 | 324 | 0.4701 | 0.7083 | 0.4701 | 0.6857 |
214
+ | No log | 5.6207 | 326 | 0.4312 | 0.6638 | 0.4312 | 0.6567 |
215
+ | No log | 5.6552 | 328 | 0.4116 | 0.6638 | 0.4116 | 0.6415 |
216
+ | No log | 5.6897 | 330 | 0.4178 | 0.7083 | 0.4178 | 0.6463 |
217
+ | No log | 5.7241 | 332 | 0.4194 | 0.7083 | 0.4194 | 0.6476 |
218
+ | No log | 5.7586 | 334 | 0.4277 | 0.7083 | 0.4277 | 0.6540 |
219
+ | No log | 5.7931 | 336 | 0.4488 | 0.7083 | 0.4488 | 0.6699 |
220
+ | No log | 5.8276 | 338 | 0.4932 | 0.7083 | 0.4932 | 0.7023 |
221
+ | No log | 5.8621 | 340 | 0.5150 | 0.7490 | 0.5150 | 0.7176 |
222
+ | No log | 5.8966 | 342 | 0.5372 | 0.7328 | 0.5372 | 0.7329 |
223
+ | No log | 5.9310 | 344 | 0.5300 | 0.7328 | 0.5300 | 0.7280 |
224
+ | No log | 5.9655 | 346 | 0.5221 | 0.7742 | 0.5221 | 0.7225 |
225
+ | No log | 6.0 | 348 | 0.5318 | 0.7635 | 0.5318 | 0.7292 |
226
+ | No log | 6.0345 | 350 | 0.5280 | 0.7093 | 0.5280 | 0.7266 |
227
+ | No log | 6.0690 | 352 | 0.5428 | 0.7635 | 0.5428 | 0.7367 |
228
+ | No log | 6.1034 | 354 | 0.6044 | 0.7692 | 0.6044 | 0.7774 |
229
+ | No log | 6.1379 | 356 | 0.6023 | 0.7692 | 0.6023 | 0.7761 |
230
+ | No log | 6.1724 | 358 | 0.5257 | 0.7586 | 0.5257 | 0.7251 |
231
+ | No log | 6.2069 | 360 | 0.4630 | 0.7445 | 0.4630 | 0.6804 |
232
+ | No log | 6.2414 | 362 | 0.4503 | 0.7004 | 0.4503 | 0.6710 |
233
+ | No log | 6.2759 | 364 | 0.4679 | 0.7083 | 0.4679 | 0.6841 |
234
+ | No log | 6.3103 | 366 | 0.5503 | 0.7692 | 0.5503 | 0.7418 |
235
+ | No log | 6.3448 | 368 | 0.6106 | 0.7407 | 0.6106 | 0.7814 |
236
+ | No log | 6.3793 | 370 | 0.5989 | 0.7692 | 0.5989 | 0.7739 |
237
+ | No log | 6.4138 | 372 | 0.5346 | 0.7083 | 0.5346 | 0.7312 |
238
+ | No log | 6.4483 | 374 | 0.4729 | 0.7083 | 0.4729 | 0.6877 |
239
+ | No log | 6.4828 | 376 | 0.4847 | 0.7083 | 0.4847 | 0.6962 |
240
+ | No log | 6.5172 | 378 | 0.4948 | 0.7083 | 0.4948 | 0.7034 |
241
+ | No log | 6.5517 | 380 | 0.4860 | 0.7083 | 0.4860 | 0.6972 |
242
+ | No log | 6.5862 | 382 | 0.4726 | 0.7083 | 0.4726 | 0.6875 |
243
+ | No log | 6.6207 | 384 | 0.4237 | 0.7083 | 0.4237 | 0.6510 |
244
+ | No log | 6.6552 | 386 | 0.3913 | 0.6379 | 0.3913 | 0.6255 |
245
+ | No log | 6.6897 | 388 | 0.3916 | 0.6379 | 0.3916 | 0.6258 |
246
+ | No log | 6.7241 | 390 | 0.4174 | 0.7083 | 0.4174 | 0.6461 |
247
+ | No log | 6.7586 | 392 | 0.4761 | 0.7083 | 0.4761 | 0.6900 |
248
+ | No log | 6.7931 | 394 | 0.5562 | 0.7328 | 0.5562 | 0.7458 |
249
+ | No log | 6.8276 | 396 | 0.6071 | 0.7328 | 0.6071 | 0.7791 |
250
+ | No log | 6.8621 | 398 | 0.5826 | 0.7328 | 0.5826 | 0.7633 |
251
+ | No log | 6.8966 | 400 | 0.5192 | 0.7083 | 0.5192 | 0.7206 |
252
+ | No log | 6.9310 | 402 | 0.5004 | 0.7083 | 0.5004 | 0.7074 |
253
+ | No log | 6.9655 | 404 | 0.4557 | 0.7083 | 0.4557 | 0.6751 |
254
+ | No log | 7.0 | 406 | 0.4332 | 0.7083 | 0.4332 | 0.6581 |
255
+ | No log | 7.0345 | 408 | 0.4381 | 0.7083 | 0.4381 | 0.6619 |
256
+ | No log | 7.0690 | 410 | 0.4330 | 0.7083 | 0.4330 | 0.6580 |
257
+ | No log | 7.1034 | 412 | 0.4137 | 0.6638 | 0.4137 | 0.6432 |
258
+ | No log | 7.1379 | 414 | 0.4279 | 0.6638 | 0.4279 | 0.6541 |
259
+ | No log | 7.1724 | 416 | 0.4526 | 0.7083 | 0.4526 | 0.6727 |
260
+ | No log | 7.2069 | 418 | 0.5084 | 0.7083 | 0.5084 | 0.7130 |
261
+ | No log | 7.2414 | 420 | 0.5747 | 0.7083 | 0.5747 | 0.7581 |
262
+ | No log | 7.2759 | 422 | 0.6111 | 0.7083 | 0.6111 | 0.7817 |
263
+ | No log | 7.3103 | 424 | 0.6389 | 0.6932 | 0.6389 | 0.7993 |
264
+ | No log | 7.3448 | 426 | 0.5930 | 0.7083 | 0.5930 | 0.7701 |
265
+ | No log | 7.3793 | 428 | 0.5246 | 0.7083 | 0.5246 | 0.7243 |
266
+ | No log | 7.4138 | 430 | 0.4853 | 0.7083 | 0.4853 | 0.6967 |
267
+ | No log | 7.4483 | 432 | 0.4777 | 0.7083 | 0.4777 | 0.6911 |
268
+ | No log | 7.4828 | 434 | 0.4777 | 0.7083 | 0.4777 | 0.6912 |
269
+ | No log | 7.5172 | 436 | 0.4812 | 0.7490 | 0.4812 | 0.6937 |
270
+ | No log | 7.5517 | 438 | 0.4713 | 0.7490 | 0.4713 | 0.6865 |
271
+ | No log | 7.5862 | 440 | 0.4518 | 0.7083 | 0.4518 | 0.6721 |
272
+ | No log | 7.6207 | 442 | 0.4475 | 0.7083 | 0.4475 | 0.6690 |
273
+ | No log | 7.6552 | 444 | 0.4312 | 0.7083 | 0.4312 | 0.6567 |
274
+ | No log | 7.6897 | 446 | 0.4370 | 0.7083 | 0.4370 | 0.6611 |
275
+ | No log | 7.7241 | 448 | 0.4807 | 0.7328 | 0.4807 | 0.6933 |
276
+ | No log | 7.7586 | 450 | 0.4999 | 0.7328 | 0.4999 | 0.7070 |
277
+ | No log | 7.7931 | 452 | 0.4728 | 0.7083 | 0.4728 | 0.6876 |
278
+ | No log | 7.8276 | 454 | 0.4443 | 0.7083 | 0.4443 | 0.6665 |
279
+ | No log | 7.8621 | 456 | 0.4319 | 0.7083 | 0.4319 | 0.6572 |
280
+ | No log | 7.8966 | 458 | 0.4143 | 0.7083 | 0.4143 | 0.6437 |
281
+ | No log | 7.9310 | 460 | 0.4076 | 0.7083 | 0.4076 | 0.6384 |
282
+ | No log | 7.9655 | 462 | 0.4203 | 0.7083 | 0.4203 | 0.6483 |
283
+ | No log | 8.0 | 464 | 0.4405 | 0.7083 | 0.4405 | 0.6637 |
284
+ | No log | 8.0345 | 466 | 0.4388 | 0.7083 | 0.4388 | 0.6624 |
285
+ | No log | 8.0690 | 468 | 0.4332 | 0.7083 | 0.4332 | 0.6582 |
286
+ | No log | 8.1034 | 470 | 0.4306 | 0.7083 | 0.4306 | 0.6562 |
287
+ | No log | 8.1379 | 472 | 0.4411 | 0.7083 | 0.4411 | 0.6642 |
288
+ | No log | 8.1724 | 474 | 0.4606 | 0.7083 | 0.4606 | 0.6787 |
289
+ | No log | 8.2069 | 476 | 0.4886 | 0.7083 | 0.4886 | 0.6990 |
290
+ | No log | 8.2414 | 478 | 0.5172 | 0.7328 | 0.5172 | 0.7192 |
291
+ | No log | 8.2759 | 480 | 0.5302 | 0.7692 | 0.5302 | 0.7281 |
292
+ | No log | 8.3103 | 482 | 0.5634 | 0.7692 | 0.5634 | 0.7506 |
293
+ | No log | 8.3448 | 484 | 0.5587 | 0.7692 | 0.5587 | 0.7475 |
294
+ | No log | 8.3793 | 486 | 0.5581 | 0.7692 | 0.5581 | 0.7471 |
295
+ | No log | 8.4138 | 488 | 0.5233 | 0.7328 | 0.5233 | 0.7234 |
296
+ | No log | 8.4483 | 490 | 0.4693 | 0.7083 | 0.4693 | 0.6850 |
297
+ | No log | 8.4828 | 492 | 0.4251 | 0.7083 | 0.4251 | 0.6520 |
298
+ | No log | 8.5172 | 494 | 0.4042 | 0.7083 | 0.4042 | 0.6357 |
299
+ | No log | 8.5517 | 496 | 0.3927 | 0.7083 | 0.3927 | 0.6267 |
300
+ | No log | 8.5862 | 498 | 0.3942 | 0.7083 | 0.3942 | 0.6279 |
301
+ | 0.2938 | 8.6207 | 500 | 0.4090 | 0.7083 | 0.4090 | 0.6396 |
302
+ | 0.2938 | 8.6552 | 502 | 0.4246 | 0.7083 | 0.4246 | 0.6516 |
303
+ | 0.2938 | 8.6897 | 504 | 0.4306 | 0.7083 | 0.4306 | 0.6562 |
304
+ | 0.2938 | 8.7241 | 506 | 0.4508 | 0.7083 | 0.4508 | 0.6714 |
305
+ | 0.2938 | 8.7586 | 508 | 0.4802 | 0.7083 | 0.4802 | 0.6930 |
306
+ | 0.2938 | 8.7931 | 510 | 0.5060 | 0.7083 | 0.5060 | 0.7114 |
307
+ | 0.2938 | 8.8276 | 512 | 0.5132 | 0.7083 | 0.5132 | 0.7164 |
308
+ | 0.2938 | 8.8621 | 514 | 0.5058 | 0.7083 | 0.5058 | 0.7112 |
309
+ | 0.2938 | 8.8966 | 516 | 0.5028 | 0.7083 | 0.5028 | 0.7091 |
310
+ | 0.2938 | 8.9310 | 518 | 0.4971 | 0.7083 | 0.4971 | 0.7051 |
311
+ | 0.2938 | 8.9655 | 520 | 0.4928 | 0.7083 | 0.4928 | 0.7020 |
312
+ | 0.2938 | 9.0 | 522 | 0.4912 | 0.7083 | 0.4912 | 0.7008 |
313
+ | 0.2938 | 9.0345 | 524 | 0.4788 | 0.7083 | 0.4788 | 0.6919 |
314
+ | 0.2938 | 9.0690 | 526 | 0.4750 | 0.7083 | 0.4750 | 0.6892 |
315
+ | 0.2938 | 9.1034 | 528 | 0.4711 | 0.7083 | 0.4711 | 0.6863 |
316
+ | 0.2938 | 9.1379 | 530 | 0.4689 | 0.7083 | 0.4689 | 0.6848 |
317
+ | 0.2938 | 9.1724 | 532 | 0.4677 | 0.7083 | 0.4677 | 0.6839 |
318
+ | 0.2938 | 9.2069 | 534 | 0.4640 | 0.7083 | 0.4640 | 0.6812 |
319
+ | 0.2938 | 9.2414 | 536 | 0.4695 | 0.7083 | 0.4695 | 0.6852 |
320
+ | 0.2938 | 9.2759 | 538 | 0.4790 | 0.7490 | 0.4790 | 0.6921 |
321
+ | 0.2938 | 9.3103 | 540 | 0.4915 | 0.7328 | 0.4915 | 0.7011 |
322
+ | 0.2938 | 9.3448 | 542 | 0.5014 | 0.7328 | 0.5014 | 0.7081 |
323
+ | 0.2938 | 9.3793 | 544 | 0.5012 | 0.7328 | 0.5012 | 0.7080 |
324
+ | 0.2938 | 9.4138 | 546 | 0.4974 | 0.7328 | 0.4974 | 0.7053 |
325
+ | 0.2938 | 9.4483 | 548 | 0.4966 | 0.7328 | 0.4966 | 0.7047 |
326
+ | 0.2938 | 9.4828 | 550 | 0.4913 | 0.7328 | 0.4913 | 0.7009 |
327
+ | 0.2938 | 9.5172 | 552 | 0.4911 | 0.7328 | 0.4911 | 0.7008 |
328
+ | 0.2938 | 9.5517 | 554 | 0.4939 | 0.7328 | 0.4939 | 0.7028 |
329
+ | 0.2938 | 9.5862 | 556 | 0.4893 | 0.7083 | 0.4893 | 0.6995 |
330
+ | 0.2938 | 9.6207 | 558 | 0.4798 | 0.7083 | 0.4798 | 0.6926 |
331
+ | 0.2938 | 9.6552 | 560 | 0.4693 | 0.7083 | 0.4693 | 0.6850 |
332
+ | 0.2938 | 9.6897 | 562 | 0.4623 | 0.7083 | 0.4623 | 0.6799 |
333
+ | 0.2938 | 9.7241 | 564 | 0.4581 | 0.7083 | 0.4581 | 0.6769 |
334
+ | 0.2938 | 9.7586 | 566 | 0.4581 | 0.7083 | 0.4581 | 0.6768 |
335
+ | 0.2938 | 9.7931 | 568 | 0.4614 | 0.7083 | 0.4614 | 0.6792 |
336
+ | 0.2938 | 9.8276 | 570 | 0.4643 | 0.7083 | 0.4643 | 0.6814 |
337
+ | 0.2938 | 9.8621 | 572 | 0.4674 | 0.7083 | 0.4674 | 0.6836 |
338
+ | 0.2938 | 9.8966 | 574 | 0.4695 | 0.7083 | 0.4695 | 0.6852 |
339
+ | 0.2938 | 9.9310 | 576 | 0.4720 | 0.7083 | 0.4720 | 0.6870 |
340
+ | 0.2938 | 9.9655 | 578 | 0.4739 | 0.7083 | 0.4739 | 0.6884 |
341
+ | 0.2938 | 10.0 | 580 | 0.4748 | 0.7083 | 0.4748 | 0.6890 |
342
+
343
+
344
+ ### Framework versions
345
+
346
+ - Transformers 4.44.2
347
+ - Pytorch 2.4.0+cu118
348
+ - Datasets 2.21.0
349
+ - Tokenizers 0.19.1
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "aubmindlab/bert-base-arabertv02",
3
+ "architectures": [
4
+ "BertForSequenceClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 768,
11
+ "id2label": {
12
+ "0": "LABEL_0"
13
+ },
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "label2id": {
17
+ "LABEL_0": 0
18
+ },
19
+ "layer_norm_eps": 1e-12,
20
+ "max_position_embeddings": 512,
21
+ "model_type": "bert",
22
+ "num_attention_heads": 12,
23
+ "num_hidden_layers": 12,
24
+ "pad_token_id": 0,
25
+ "position_embedding_type": "absolute",
26
+ "problem_type": "regression",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.44.2",
29
+ "type_vocab_size": 2,
30
+ "use_cache": true,
31
+ "vocab_size": 64000
32
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:39c3ca7aeec595d4ab013359b68944a37605c38abf6c65b7bf923977a7cfa24d
3
+ size 540799996
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:df82ee8858d8e473bc4107338a7709d954c612d8b38680d2e436ad2c77bebcc8
3
+ size 5240