MayBashendy commited on
Commit
b96ba5e
·
verified ·
1 Parent(s): 543379d

Training in progress, step 500

Browse files
Files changed (4) hide show
  1. README.md +341 -0
  2. config.json +32 -0
  3. model.safetensors +3 -0
  4. training_args.bin +3 -0
README.md ADDED
@@ -0,0 +1,341 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ base_model: aubmindlab/bert-base-arabertv02
4
+ tags:
5
+ - generated_from_trainer
6
+ model-index:
7
+ - name: ArabicNewSplits8_usingALLEssays_FineTuningAraBERT_run2_AugV5_k5_task2_organization
8
+ results: []
9
+ ---
10
+
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
+
14
+ # ArabicNewSplits8_usingALLEssays_FineTuningAraBERT_run2_AugV5_k5_task2_organization
15
+
16
+ This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset.
17
+ It achieves the following results on the evaluation set:
18
+ - Loss: 0.7559
19
+ - Qwk: 0.4469
20
+ - Mse: 0.7559
21
+ - Rmse: 0.8694
22
+
23
+ ## Model description
24
+
25
+ More information needed
26
+
27
+ ## Intended uses & limitations
28
+
29
+ More information needed
30
+
31
+ ## Training and evaluation data
32
+
33
+ More information needed
34
+
35
+ ## Training procedure
36
+
37
+ ### Training hyperparameters
38
+
39
+ The following hyperparameters were used during training:
40
+ - learning_rate: 2e-05
41
+ - train_batch_size: 8
42
+ - eval_batch_size: 8
43
+ - seed: 42
44
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
45
+ - lr_scheduler_type: linear
46
+ - num_epochs: 100
47
+
48
+ ### Training results
49
+
50
+ | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse |
51
+ |:-------------:|:-------:|:----:|:---------------:|:-------:|:------:|:------:|
52
+ | No log | 0.0714 | 2 | 4.1593 | -0.0228 | 4.1593 | 2.0394 |
53
+ | No log | 0.1429 | 4 | 2.1598 | 0.0043 | 2.1598 | 1.4696 |
54
+ | No log | 0.2143 | 6 | 1.3269 | 0.0048 | 1.3269 | 1.1519 |
55
+ | No log | 0.2857 | 8 | 0.9564 | 0.0572 | 0.9564 | 0.9779 |
56
+ | No log | 0.3571 | 10 | 0.9769 | -0.0210 | 0.9769 | 0.9884 |
57
+ | No log | 0.4286 | 12 | 1.2247 | 0.0262 | 1.2247 | 1.1067 |
58
+ | No log | 0.5 | 14 | 1.1861 | 0.0469 | 1.1861 | 1.0891 |
59
+ | No log | 0.5714 | 16 | 0.8378 | 0.2582 | 0.8378 | 0.9153 |
60
+ | No log | 0.6429 | 18 | 0.7382 | 0.2883 | 0.7382 | 0.8592 |
61
+ | No log | 0.7143 | 20 | 0.7602 | 0.2862 | 0.7602 | 0.8719 |
62
+ | No log | 0.7857 | 22 | 0.8478 | 0.2354 | 0.8478 | 0.9208 |
63
+ | No log | 0.8571 | 24 | 0.9453 | 0.2219 | 0.9453 | 0.9722 |
64
+ | No log | 0.9286 | 26 | 1.3071 | 0.0622 | 1.3071 | 1.1433 |
65
+ | No log | 1.0 | 28 | 1.3621 | 0.0573 | 1.3621 | 1.1671 |
66
+ | No log | 1.0714 | 30 | 1.3474 | 0.0697 | 1.3474 | 1.1608 |
67
+ | No log | 1.1429 | 32 | 1.0976 | 0.0888 | 1.0976 | 1.0477 |
68
+ | No log | 1.2143 | 34 | 1.0354 | 0.0848 | 1.0354 | 1.0175 |
69
+ | No log | 1.2857 | 36 | 0.8457 | 0.2624 | 0.8457 | 0.9196 |
70
+ | No log | 1.3571 | 38 | 0.8137 | 0.2879 | 0.8137 | 0.9021 |
71
+ | No log | 1.4286 | 40 | 0.9247 | 0.2267 | 0.9247 | 0.9616 |
72
+ | No log | 1.5 | 42 | 1.0332 | 0.1818 | 1.0332 | 1.0165 |
73
+ | No log | 1.5714 | 44 | 1.2912 | 0.1781 | 1.2912 | 1.1363 |
74
+ | No log | 1.6429 | 46 | 1.3734 | 0.1326 | 1.3734 | 1.1719 |
75
+ | No log | 1.7143 | 48 | 1.3638 | 0.0769 | 1.3638 | 1.1678 |
76
+ | No log | 1.7857 | 50 | 1.1421 | 0.0887 | 1.1421 | 1.0687 |
77
+ | No log | 1.8571 | 52 | 0.8793 | 0.2368 | 0.8793 | 0.9377 |
78
+ | No log | 1.9286 | 54 | 0.6616 | 0.3230 | 0.6616 | 0.8134 |
79
+ | No log | 2.0 | 56 | 0.6470 | 0.3613 | 0.6470 | 0.8043 |
80
+ | No log | 2.0714 | 58 | 0.6884 | 0.3883 | 0.6884 | 0.8297 |
81
+ | No log | 2.1429 | 60 | 0.7424 | 0.3683 | 0.7424 | 0.8616 |
82
+ | No log | 2.2143 | 62 | 0.9312 | 0.2472 | 0.9312 | 0.9650 |
83
+ | No log | 2.2857 | 64 | 1.2590 | 0.2372 | 1.2590 | 1.1220 |
84
+ | No log | 2.3571 | 66 | 1.3449 | 0.1646 | 1.3449 | 1.1597 |
85
+ | No log | 2.4286 | 68 | 1.0633 | 0.1850 | 1.0633 | 1.0311 |
86
+ | No log | 2.5 | 70 | 0.8954 | 0.2653 | 0.8954 | 0.9463 |
87
+ | No log | 2.5714 | 72 | 1.0334 | 0.2049 | 1.0334 | 1.0166 |
88
+ | No log | 2.6429 | 74 | 0.9250 | 0.2010 | 0.9250 | 0.9617 |
89
+ | No log | 2.7143 | 76 | 0.6773 | 0.3951 | 0.6773 | 0.8230 |
90
+ | No log | 2.7857 | 78 | 0.6300 | 0.4692 | 0.6300 | 0.7937 |
91
+ | No log | 2.8571 | 80 | 0.6010 | 0.4902 | 0.6010 | 0.7752 |
92
+ | No log | 2.9286 | 82 | 0.6287 | 0.4980 | 0.6287 | 0.7929 |
93
+ | No log | 3.0 | 84 | 0.5682 | 0.5591 | 0.5682 | 0.7538 |
94
+ | No log | 3.0714 | 86 | 0.5863 | 0.5491 | 0.5863 | 0.7657 |
95
+ | No log | 3.1429 | 88 | 0.5998 | 0.5381 | 0.5998 | 0.7745 |
96
+ | No log | 3.2143 | 90 | 0.6655 | 0.4857 | 0.6655 | 0.8158 |
97
+ | No log | 3.2857 | 92 | 0.6123 | 0.5396 | 0.6123 | 0.7825 |
98
+ | No log | 3.3571 | 94 | 0.5311 | 0.5011 | 0.5311 | 0.7288 |
99
+ | No log | 3.4286 | 96 | 0.5472 | 0.5372 | 0.5472 | 0.7397 |
100
+ | No log | 3.5 | 98 | 0.5464 | 0.5114 | 0.5464 | 0.7392 |
101
+ | No log | 3.5714 | 100 | 0.6435 | 0.5804 | 0.6435 | 0.8022 |
102
+ | No log | 3.6429 | 102 | 0.7764 | 0.5025 | 0.7764 | 0.8811 |
103
+ | No log | 3.7143 | 104 | 0.6779 | 0.5846 | 0.6779 | 0.8234 |
104
+ | No log | 3.7857 | 106 | 0.7053 | 0.5656 | 0.7053 | 0.8398 |
105
+ | No log | 3.8571 | 108 | 0.8183 | 0.4916 | 0.8183 | 0.9046 |
106
+ | No log | 3.9286 | 110 | 0.7384 | 0.5085 | 0.7384 | 0.8593 |
107
+ | No log | 4.0 | 112 | 0.7708 | 0.5115 | 0.7708 | 0.8779 |
108
+ | No log | 4.0714 | 114 | 0.9794 | 0.4040 | 0.9794 | 0.9896 |
109
+ | No log | 4.1429 | 116 | 1.2303 | 0.3288 | 1.2303 | 1.1092 |
110
+ | No log | 4.2143 | 118 | 0.8766 | 0.4014 | 0.8766 | 0.9363 |
111
+ | No log | 4.2857 | 120 | 0.6909 | 0.4891 | 0.6909 | 0.8312 |
112
+ | No log | 4.3571 | 122 | 0.5858 | 0.5515 | 0.5858 | 0.7654 |
113
+ | No log | 4.4286 | 124 | 0.6197 | 0.4932 | 0.6197 | 0.7872 |
114
+ | No log | 4.5 | 126 | 0.8154 | 0.4649 | 0.8154 | 0.9030 |
115
+ | No log | 4.5714 | 128 | 0.7935 | 0.5097 | 0.7935 | 0.8908 |
116
+ | No log | 4.6429 | 130 | 0.6746 | 0.5483 | 0.6746 | 0.8213 |
117
+ | No log | 4.7143 | 132 | 0.7185 | 0.5552 | 0.7185 | 0.8476 |
118
+ | No log | 4.7857 | 134 | 0.7687 | 0.5151 | 0.7687 | 0.8768 |
119
+ | No log | 4.8571 | 136 | 0.6742 | 0.5303 | 0.6742 | 0.8211 |
120
+ | No log | 4.9286 | 138 | 0.6277 | 0.5009 | 0.6277 | 0.7923 |
121
+ | No log | 5.0 | 140 | 0.6511 | 0.4898 | 0.6512 | 0.8069 |
122
+ | No log | 5.0714 | 142 | 0.6840 | 0.4734 | 0.6840 | 0.8270 |
123
+ | No log | 5.1429 | 144 | 0.6321 | 0.4525 | 0.6321 | 0.7950 |
124
+ | No log | 5.2143 | 146 | 0.6461 | 0.5123 | 0.6461 | 0.8038 |
125
+ | No log | 5.2857 | 148 | 0.6773 | 0.5004 | 0.6773 | 0.8230 |
126
+ | No log | 5.3571 | 150 | 0.8295 | 0.4600 | 0.8295 | 0.9108 |
127
+ | No log | 5.4286 | 152 | 0.9573 | 0.4506 | 0.9573 | 0.9784 |
128
+ | No log | 5.5 | 154 | 0.7958 | 0.4887 | 0.7958 | 0.8921 |
129
+ | No log | 5.5714 | 156 | 0.6858 | 0.5622 | 0.6858 | 0.8281 |
130
+ | No log | 5.6429 | 158 | 0.6716 | 0.5083 | 0.6716 | 0.8195 |
131
+ | No log | 5.7143 | 160 | 0.7871 | 0.4725 | 0.7871 | 0.8872 |
132
+ | No log | 5.7857 | 162 | 0.7952 | 0.4831 | 0.7952 | 0.8917 |
133
+ | No log | 5.8571 | 164 | 0.6591 | 0.5152 | 0.6591 | 0.8118 |
134
+ | No log | 5.9286 | 166 | 0.6177 | 0.5531 | 0.6177 | 0.7859 |
135
+ | No log | 6.0 | 168 | 0.6514 | 0.4940 | 0.6514 | 0.8071 |
136
+ | No log | 6.0714 | 170 | 0.9421 | 0.3754 | 0.9421 | 0.9706 |
137
+ | No log | 6.1429 | 172 | 1.1738 | 0.2841 | 1.1738 | 1.0834 |
138
+ | No log | 6.2143 | 174 | 1.0141 | 0.3187 | 1.0141 | 1.0070 |
139
+ | No log | 6.2857 | 176 | 0.6629 | 0.5560 | 0.6629 | 0.8142 |
140
+ | No log | 6.3571 | 178 | 0.5937 | 0.5414 | 0.5937 | 0.7706 |
141
+ | No log | 6.4286 | 180 | 0.6127 | 0.5379 | 0.6127 | 0.7827 |
142
+ | No log | 6.5 | 182 | 0.7320 | 0.4691 | 0.7320 | 0.8555 |
143
+ | No log | 6.5714 | 184 | 0.7497 | 0.4893 | 0.7497 | 0.8658 |
144
+ | No log | 6.6429 | 186 | 0.7482 | 0.5500 | 0.7482 | 0.8650 |
145
+ | No log | 6.7143 | 188 | 0.6558 | 0.5347 | 0.6558 | 0.8098 |
146
+ | No log | 6.7857 | 190 | 0.6395 | 0.4986 | 0.6395 | 0.7997 |
147
+ | No log | 6.8571 | 192 | 0.6639 | 0.4686 | 0.6639 | 0.8148 |
148
+ | No log | 6.9286 | 194 | 0.7456 | 0.5474 | 0.7456 | 0.8635 |
149
+ | No log | 7.0 | 196 | 0.8644 | 0.4289 | 0.8644 | 0.9297 |
150
+ | No log | 7.0714 | 198 | 0.7391 | 0.5568 | 0.7391 | 0.8597 |
151
+ | No log | 7.1429 | 200 | 0.6460 | 0.5153 | 0.6460 | 0.8037 |
152
+ | No log | 7.2143 | 202 | 0.6627 | 0.4896 | 0.6627 | 0.8141 |
153
+ | No log | 7.2857 | 204 | 0.6451 | 0.4945 | 0.6451 | 0.8032 |
154
+ | No log | 7.3571 | 206 | 0.6771 | 0.4857 | 0.6771 | 0.8229 |
155
+ | No log | 7.4286 | 208 | 0.7933 | 0.4474 | 0.7933 | 0.8907 |
156
+ | No log | 7.5 | 210 | 0.7990 | 0.4367 | 0.7990 | 0.8938 |
157
+ | No log | 7.5714 | 212 | 0.6717 | 0.5038 | 0.6717 | 0.8196 |
158
+ | No log | 7.6429 | 214 | 0.6229 | 0.4373 | 0.6229 | 0.7893 |
159
+ | No log | 7.7143 | 216 | 0.6649 | 0.4415 | 0.6649 | 0.8154 |
160
+ | No log | 7.7857 | 218 | 0.6493 | 0.4689 | 0.6493 | 0.8058 |
161
+ | No log | 7.8571 | 220 | 0.7624 | 0.4274 | 0.7624 | 0.8732 |
162
+ | No log | 7.9286 | 222 | 1.0327 | 0.3565 | 1.0327 | 1.0162 |
163
+ | No log | 8.0 | 224 | 1.2454 | 0.2731 | 1.2454 | 1.1160 |
164
+ | No log | 8.0714 | 226 | 1.1975 | 0.2714 | 1.1975 | 1.0943 |
165
+ | No log | 8.1429 | 228 | 0.9038 | 0.3750 | 0.9038 | 0.9507 |
166
+ | No log | 8.2143 | 230 | 0.7154 | 0.4549 | 0.7154 | 0.8458 |
167
+ | No log | 8.2857 | 232 | 0.6691 | 0.4236 | 0.6691 | 0.8180 |
168
+ | No log | 8.3571 | 234 | 0.6419 | 0.4217 | 0.6419 | 0.8012 |
169
+ | No log | 8.4286 | 236 | 0.6417 | 0.4395 | 0.6417 | 0.8011 |
170
+ | No log | 8.5 | 238 | 0.6648 | 0.4704 | 0.6648 | 0.8154 |
171
+ | No log | 8.5714 | 240 | 0.6488 | 0.4613 | 0.6488 | 0.8055 |
172
+ | No log | 8.6429 | 242 | 0.6583 | 0.4337 | 0.6583 | 0.8113 |
173
+ | No log | 8.7143 | 244 | 0.6694 | 0.4168 | 0.6694 | 0.8182 |
174
+ | No log | 8.7857 | 246 | 0.6807 | 0.4754 | 0.6807 | 0.8251 |
175
+ | No log | 8.8571 | 248 | 0.6966 | 0.4969 | 0.6966 | 0.8346 |
176
+ | No log | 8.9286 | 250 | 0.7216 | 0.4694 | 0.7216 | 0.8494 |
177
+ | No log | 9.0 | 252 | 0.7315 | 0.5096 | 0.7315 | 0.8553 |
178
+ | No log | 9.0714 | 254 | 0.6740 | 0.4715 | 0.6740 | 0.8210 |
179
+ | No log | 9.1429 | 256 | 0.6537 | 0.5005 | 0.6537 | 0.8085 |
180
+ | No log | 9.2143 | 258 | 0.6398 | 0.5018 | 0.6398 | 0.7999 |
181
+ | No log | 9.2857 | 260 | 0.6505 | 0.4948 | 0.6505 | 0.8066 |
182
+ | No log | 9.3571 | 262 | 0.7071 | 0.5194 | 0.7071 | 0.8409 |
183
+ | No log | 9.4286 | 264 | 0.6983 | 0.4930 | 0.6983 | 0.8356 |
184
+ | No log | 9.5 | 266 | 0.6684 | 0.4878 | 0.6684 | 0.8176 |
185
+ | No log | 9.5714 | 268 | 0.7331 | 0.4646 | 0.7331 | 0.8562 |
186
+ | No log | 9.6429 | 270 | 0.7766 | 0.4687 | 0.7766 | 0.8813 |
187
+ | No log | 9.7143 | 272 | 0.6957 | 0.4870 | 0.6957 | 0.8341 |
188
+ | No log | 9.7857 | 274 | 0.6554 | 0.4549 | 0.6554 | 0.8096 |
189
+ | No log | 9.8571 | 276 | 0.6555 | 0.4790 | 0.6555 | 0.8096 |
190
+ | No log | 9.9286 | 278 | 0.6396 | 0.4572 | 0.6396 | 0.7997 |
191
+ | No log | 10.0 | 280 | 0.6351 | 0.4367 | 0.6351 | 0.7969 |
192
+ | No log | 10.0714 | 282 | 0.6492 | 0.4676 | 0.6492 | 0.8057 |
193
+ | No log | 10.1429 | 284 | 0.6745 | 0.4844 | 0.6745 | 0.8213 |
194
+ | No log | 10.2143 | 286 | 0.7145 | 0.5232 | 0.7145 | 0.8453 |
195
+ | No log | 10.2857 | 288 | 0.8973 | 0.4677 | 0.8973 | 0.9473 |
196
+ | No log | 10.3571 | 290 | 1.0052 | 0.3941 | 1.0052 | 1.0026 |
197
+ | No log | 10.4286 | 292 | 0.8630 | 0.4614 | 0.8630 | 0.9290 |
198
+ | No log | 10.5 | 294 | 0.6842 | 0.5238 | 0.6842 | 0.8272 |
199
+ | No log | 10.5714 | 296 | 0.6658 | 0.4670 | 0.6658 | 0.8160 |
200
+ | No log | 10.6429 | 298 | 0.6920 | 0.4730 | 0.6920 | 0.8319 |
201
+ | No log | 10.7143 | 300 | 0.6280 | 0.4354 | 0.6280 | 0.7924 |
202
+ | No log | 10.7857 | 302 | 0.6002 | 0.5265 | 0.6002 | 0.7747 |
203
+ | No log | 10.8571 | 304 | 0.6108 | 0.5580 | 0.6108 | 0.7815 |
204
+ | No log | 10.9286 | 306 | 0.6127 | 0.5396 | 0.6127 | 0.7828 |
205
+ | No log | 11.0 | 308 | 0.6292 | 0.4557 | 0.6292 | 0.7932 |
206
+ | No log | 11.0714 | 310 | 0.7055 | 0.4839 | 0.7055 | 0.8399 |
207
+ | No log | 11.1429 | 312 | 0.6865 | 0.4845 | 0.6865 | 0.8285 |
208
+ | No log | 11.2143 | 314 | 0.6383 | 0.4830 | 0.6383 | 0.7989 |
209
+ | No log | 11.2857 | 316 | 0.6368 | 0.4909 | 0.6368 | 0.7980 |
210
+ | No log | 11.3571 | 318 | 0.6390 | 0.4909 | 0.6390 | 0.7994 |
211
+ | No log | 11.4286 | 320 | 0.6535 | 0.4812 | 0.6535 | 0.8084 |
212
+ | No log | 11.5 | 322 | 0.6265 | 0.4383 | 0.6265 | 0.7915 |
213
+ | No log | 11.5714 | 324 | 0.6078 | 0.4865 | 0.6078 | 0.7796 |
214
+ | No log | 11.6429 | 326 | 0.6256 | 0.5504 | 0.6256 | 0.7910 |
215
+ | No log | 11.7143 | 328 | 0.6251 | 0.5527 | 0.6251 | 0.7907 |
216
+ | No log | 11.7857 | 330 | 0.6388 | 0.5489 | 0.6388 | 0.7992 |
217
+ | No log | 11.8571 | 332 | 0.6750 | 0.5369 | 0.6750 | 0.8216 |
218
+ | No log | 11.9286 | 334 | 0.7540 | 0.4936 | 0.7540 | 0.8683 |
219
+ | No log | 12.0 | 336 | 0.7801 | 0.4611 | 0.7801 | 0.8832 |
220
+ | No log | 12.0714 | 338 | 0.7023 | 0.4713 | 0.7023 | 0.8380 |
221
+ | No log | 12.1429 | 340 | 0.6443 | 0.5063 | 0.6443 | 0.8027 |
222
+ | No log | 12.2143 | 342 | 0.6551 | 0.5005 | 0.6551 | 0.8094 |
223
+ | No log | 12.2857 | 344 | 0.6362 | 0.4954 | 0.6362 | 0.7976 |
224
+ | No log | 12.3571 | 346 | 0.6266 | 0.4940 | 0.6266 | 0.7916 |
225
+ | No log | 12.4286 | 348 | 0.6250 | 0.4739 | 0.6250 | 0.7906 |
226
+ | No log | 12.5 | 350 | 0.6449 | 0.5156 | 0.6449 | 0.8031 |
227
+ | No log | 12.5714 | 352 | 0.6755 | 0.5082 | 0.6755 | 0.8219 |
228
+ | No log | 12.6429 | 354 | 0.6559 | 0.4834 | 0.6559 | 0.8099 |
229
+ | No log | 12.7143 | 356 | 0.6827 | 0.5066 | 0.6827 | 0.8263 |
230
+ | No log | 12.7857 | 358 | 0.7062 | 0.5111 | 0.7062 | 0.8403 |
231
+ | No log | 12.8571 | 360 | 0.6883 | 0.4878 | 0.6883 | 0.8297 |
232
+ | No log | 12.9286 | 362 | 0.6740 | 0.4767 | 0.6740 | 0.8210 |
233
+ | No log | 13.0 | 364 | 0.6703 | 0.4673 | 0.6703 | 0.8187 |
234
+ | No log | 13.0714 | 366 | 0.6685 | 0.4792 | 0.6685 | 0.8176 |
235
+ | No log | 13.1429 | 368 | 0.6605 | 0.4491 | 0.6605 | 0.8127 |
236
+ | No log | 13.2143 | 370 | 0.6652 | 0.4677 | 0.6652 | 0.8156 |
237
+ | No log | 13.2857 | 372 | 0.6813 | 0.4775 | 0.6813 | 0.8254 |
238
+ | No log | 13.3571 | 374 | 0.6669 | 0.4802 | 0.6669 | 0.8166 |
239
+ | No log | 13.4286 | 376 | 0.6588 | 0.4869 | 0.6588 | 0.8117 |
240
+ | No log | 13.5 | 378 | 0.6295 | 0.5352 | 0.6295 | 0.7934 |
241
+ | No log | 13.5714 | 380 | 0.6847 | 0.4672 | 0.6847 | 0.8275 |
242
+ | No log | 13.6429 | 382 | 0.7197 | 0.4500 | 0.7197 | 0.8483 |
243
+ | No log | 13.7143 | 384 | 0.6628 | 0.4926 | 0.6628 | 0.8142 |
244
+ | No log | 13.7857 | 386 | 0.6650 | 0.5646 | 0.6650 | 0.8155 |
245
+ | No log | 13.8571 | 388 | 0.7618 | 0.4767 | 0.7618 | 0.8728 |
246
+ | No log | 13.9286 | 390 | 0.7741 | 0.4922 | 0.7741 | 0.8798 |
247
+ | No log | 14.0 | 392 | 0.7838 | 0.4997 | 0.7838 | 0.8853 |
248
+ | No log | 14.0714 | 394 | 0.8116 | 0.4753 | 0.8116 | 0.9009 |
249
+ | No log | 14.1429 | 396 | 0.7701 | 0.4934 | 0.7701 | 0.8775 |
250
+ | No log | 14.2143 | 398 | 0.7419 | 0.5059 | 0.7419 | 0.8613 |
251
+ | No log | 14.2857 | 400 | 0.6618 | 0.5538 | 0.6618 | 0.8135 |
252
+ | No log | 14.3571 | 402 | 0.6218 | 0.5403 | 0.6218 | 0.7885 |
253
+ | No log | 14.4286 | 404 | 0.6434 | 0.5538 | 0.6434 | 0.8021 |
254
+ | No log | 14.5 | 406 | 0.6150 | 0.5729 | 0.6150 | 0.7842 |
255
+ | No log | 14.5714 | 408 | 0.5943 | 0.5132 | 0.5943 | 0.7709 |
256
+ | No log | 14.6429 | 410 | 0.6112 | 0.5646 | 0.6112 | 0.7818 |
257
+ | No log | 14.7143 | 412 | 0.6099 | 0.5312 | 0.6099 | 0.7810 |
258
+ | No log | 14.7857 | 414 | 0.6323 | 0.5555 | 0.6323 | 0.7952 |
259
+ | No log | 14.8571 | 416 | 0.6967 | 0.5251 | 0.6967 | 0.8347 |
260
+ | No log | 14.9286 | 418 | 0.7958 | 0.5023 | 0.7958 | 0.8921 |
261
+ | No log | 15.0 | 420 | 0.7822 | 0.4981 | 0.7822 | 0.8844 |
262
+ | No log | 15.0714 | 422 | 0.7544 | 0.5158 | 0.7544 | 0.8686 |
263
+ | No log | 15.1429 | 424 | 0.6841 | 0.5261 | 0.6841 | 0.8271 |
264
+ | No log | 15.2143 | 426 | 0.6847 | 0.5469 | 0.6847 | 0.8275 |
265
+ | No log | 15.2857 | 428 | 0.7058 | 0.5182 | 0.7058 | 0.8401 |
266
+ | No log | 15.3571 | 430 | 0.6550 | 0.4960 | 0.6550 | 0.8093 |
267
+ | No log | 15.4286 | 432 | 0.6205 | 0.5365 | 0.6205 | 0.7877 |
268
+ | No log | 15.5 | 434 | 0.6053 | 0.5118 | 0.6053 | 0.7780 |
269
+ | No log | 15.5714 | 436 | 0.6128 | 0.5396 | 0.6128 | 0.7828 |
270
+ | No log | 15.6429 | 438 | 0.6272 | 0.4991 | 0.6272 | 0.7919 |
271
+ | No log | 15.7143 | 440 | 0.6217 | 0.5641 | 0.6217 | 0.7885 |
272
+ | No log | 15.7857 | 442 | 0.6288 | 0.4868 | 0.6288 | 0.7929 |
273
+ | No log | 15.8571 | 444 | 0.6378 | 0.5006 | 0.6378 | 0.7986 |
274
+ | No log | 15.9286 | 446 | 0.6218 | 0.5161 | 0.6218 | 0.7885 |
275
+ | No log | 16.0 | 448 | 0.6248 | 0.5069 | 0.6248 | 0.7904 |
276
+ | No log | 16.0714 | 450 | 0.6389 | 0.5024 | 0.6389 | 0.7993 |
277
+ | No log | 16.1429 | 452 | 0.6511 | 0.5024 | 0.6511 | 0.8069 |
278
+ | No log | 16.2143 | 454 | 0.6510 | 0.5024 | 0.6510 | 0.8069 |
279
+ | No log | 16.2857 | 456 | 0.6527 | 0.4820 | 0.6527 | 0.8079 |
280
+ | No log | 16.3571 | 458 | 0.6811 | 0.5542 | 0.6811 | 0.8253 |
281
+ | No log | 16.4286 | 460 | 0.6544 | 0.5625 | 0.6544 | 0.8090 |
282
+ | No log | 16.5 | 462 | 0.6228 | 0.4984 | 0.6228 | 0.7892 |
283
+ | No log | 16.5714 | 464 | 0.6455 | 0.5242 | 0.6455 | 0.8034 |
284
+ | No log | 16.6429 | 466 | 0.6620 | 0.5408 | 0.6620 | 0.8136 |
285
+ | No log | 16.7143 | 468 | 0.6792 | 0.5239 | 0.6792 | 0.8242 |
286
+ | No log | 16.7857 | 470 | 0.6858 | 0.5333 | 0.6858 | 0.8281 |
287
+ | No log | 16.8571 | 472 | 0.7191 | 0.5327 | 0.7191 | 0.8480 |
288
+ | No log | 16.9286 | 474 | 0.6999 | 0.5305 | 0.6999 | 0.8366 |
289
+ | No log | 17.0 | 476 | 0.6634 | 0.5378 | 0.6634 | 0.8145 |
290
+ | No log | 17.0714 | 478 | 0.6407 | 0.5254 | 0.6407 | 0.8004 |
291
+ | No log | 17.1429 | 480 | 0.6331 | 0.5088 | 0.6331 | 0.7957 |
292
+ | No log | 17.2143 | 482 | 0.6203 | 0.5473 | 0.6203 | 0.7876 |
293
+ | No log | 17.2857 | 484 | 0.6176 | 0.5178 | 0.6176 | 0.7859 |
294
+ | No log | 17.3571 | 486 | 0.6442 | 0.5354 | 0.6442 | 0.8026 |
295
+ | No log | 17.4286 | 488 | 0.6433 | 0.5245 | 0.6433 | 0.8020 |
296
+ | No log | 17.5 | 490 | 0.6366 | 0.5357 | 0.6366 | 0.7979 |
297
+ | No log | 17.5714 | 492 | 0.6372 | 0.5288 | 0.6372 | 0.7982 |
298
+ | No log | 17.6429 | 494 | 0.6348 | 0.5408 | 0.6348 | 0.7968 |
299
+ | No log | 17.7143 | 496 | 0.6461 | 0.5358 | 0.6461 | 0.8038 |
300
+ | No log | 17.7857 | 498 | 0.6529 | 0.5176 | 0.6529 | 0.8080 |
301
+ | 0.3235 | 17.8571 | 500 | 0.6651 | 0.5097 | 0.6651 | 0.8155 |
302
+ | 0.3235 | 17.9286 | 502 | 0.6966 | 0.5119 | 0.6966 | 0.8346 |
303
+ | 0.3235 | 18.0 | 504 | 0.7478 | 0.5071 | 0.7478 | 0.8647 |
304
+ | 0.3235 | 18.0714 | 506 | 0.7675 | 0.5129 | 0.7675 | 0.8761 |
305
+ | 0.3235 | 18.1429 | 508 | 0.6929 | 0.4991 | 0.6929 | 0.8324 |
306
+ | 0.3235 | 18.2143 | 510 | 0.6470 | 0.5618 | 0.6470 | 0.8044 |
307
+ | 0.3235 | 18.2857 | 512 | 0.6581 | 0.5228 | 0.6581 | 0.8113 |
308
+ | 0.3235 | 18.3571 | 514 | 0.6532 | 0.5386 | 0.6532 | 0.8082 |
309
+ | 0.3235 | 18.4286 | 516 | 0.6507 | 0.5293 | 0.6507 | 0.8067 |
310
+ | 0.3235 | 18.5 | 518 | 0.6412 | 0.5172 | 0.6412 | 0.8008 |
311
+ | 0.3235 | 18.5714 | 520 | 0.6679 | 0.5454 | 0.6679 | 0.8172 |
312
+ | 0.3235 | 18.6429 | 522 | 0.6832 | 0.5132 | 0.6832 | 0.8266 |
313
+ | 0.3235 | 18.7143 | 524 | 0.6752 | 0.5476 | 0.6752 | 0.8217 |
314
+ | 0.3235 | 18.7857 | 526 | 0.6675 | 0.5111 | 0.6675 | 0.8170 |
315
+ | 0.3235 | 18.8571 | 528 | 0.6613 | 0.5135 | 0.6613 | 0.8132 |
316
+ | 0.3235 | 18.9286 | 530 | 0.6710 | 0.5106 | 0.6710 | 0.8191 |
317
+ | 0.3235 | 19.0 | 532 | 0.7103 | 0.5343 | 0.7103 | 0.8428 |
318
+ | 0.3235 | 19.0714 | 534 | 0.7103 | 0.5217 | 0.7103 | 0.8428 |
319
+ | 0.3235 | 19.1429 | 536 | 0.6637 | 0.5614 | 0.6637 | 0.8147 |
320
+ | 0.3235 | 19.2143 | 538 | 0.6281 | 0.5048 | 0.6281 | 0.7925 |
321
+ | 0.3235 | 19.2857 | 540 | 0.6242 | 0.5069 | 0.6242 | 0.7901 |
322
+ | 0.3235 | 19.3571 | 542 | 0.6401 | 0.5155 | 0.6401 | 0.8001 |
323
+ | 0.3235 | 19.4286 | 544 | 0.6865 | 0.5373 | 0.6865 | 0.8286 |
324
+ | 0.3235 | 19.5 | 546 | 0.7035 | 0.5199 | 0.7035 | 0.8388 |
325
+ | 0.3235 | 19.5714 | 548 | 0.6893 | 0.5117 | 0.6893 | 0.8302 |
326
+ | 0.3235 | 19.6429 | 550 | 0.6841 | 0.5203 | 0.6841 | 0.8271 |
327
+ | 0.3235 | 19.7143 | 552 | 0.6912 | 0.5203 | 0.6912 | 0.8314 |
328
+ | 0.3235 | 19.7857 | 554 | 0.7249 | 0.5197 | 0.7249 | 0.8514 |
329
+ | 0.3235 | 19.8571 | 556 | 0.7686 | 0.4605 | 0.7686 | 0.8767 |
330
+ | 0.3235 | 19.9286 | 558 | 0.7789 | 0.4690 | 0.7789 | 0.8825 |
331
+ | 0.3235 | 20.0 | 560 | 0.7347 | 0.4516 | 0.7347 | 0.8572 |
332
+ | 0.3235 | 20.0714 | 562 | 0.7703 | 0.4489 | 0.7703 | 0.8777 |
333
+ | 0.3235 | 20.1429 | 564 | 0.7559 | 0.4469 | 0.7559 | 0.8694 |
334
+
335
+
336
+ ### Framework versions
337
+
338
+ - Transformers 4.44.2
339
+ - Pytorch 2.4.0+cu118
340
+ - Datasets 2.21.0
341
+ - Tokenizers 0.19.1
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "aubmindlab/bert-base-arabertv02",
3
+ "architectures": [
4
+ "BertForSequenceClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 768,
11
+ "id2label": {
12
+ "0": "LABEL_0"
13
+ },
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "label2id": {
17
+ "LABEL_0": 0
18
+ },
19
+ "layer_norm_eps": 1e-12,
20
+ "max_position_embeddings": 512,
21
+ "model_type": "bert",
22
+ "num_attention_heads": 12,
23
+ "num_hidden_layers": 12,
24
+ "pad_token_id": 0,
25
+ "position_embedding_type": "absolute",
26
+ "problem_type": "regression",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.44.2",
29
+ "type_vocab_size": 2,
30
+ "use_cache": true,
31
+ "vocab_size": 64000
32
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:69f4780d96c7b1823448341aa2bc8d0e4e96fc3bc35cbce8559e547f506ed74f
3
+ size 540799996
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:55326fbc9afda7e727be5f46548da3118723d64237dbf4000f44e6b61fa508ac
3
+ size 5304