MayBashendy commited on
Commit
06e10c5
·
verified ·
1 Parent(s): dd4ee28

Training in progress, step 500

Browse files
Files changed (4) hide show
  1. README.md +322 -0
  2. config.json +32 -0
  3. model.safetensors +3 -0
  4. training_args.bin +3 -0
README.md ADDED
@@ -0,0 +1,322 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ base_model: aubmindlab/bert-base-arabertv02
4
+ tags:
5
+ - generated_from_trainer
6
+ model-index:
7
+ - name: ArabicNewSplits8_usingALLEssays_FineTuningAraBERT_run2_AugV5_k14_task2_organization
8
+ results: []
9
+ ---
10
+
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
+
14
+ # ArabicNewSplits8_usingALLEssays_FineTuningAraBERT_run2_AugV5_k14_task2_organization
15
+
16
+ This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset.
17
+ It achieves the following results on the evaluation set:
18
+ - Loss: 0.5699
19
+ - Qwk: 0.4816
20
+ - Mse: 0.5699
21
+ - Rmse: 0.7549
22
+
23
+ ## Model description
24
+
25
+ More information needed
26
+
27
+ ## Intended uses & limitations
28
+
29
+ More information needed
30
+
31
+ ## Training and evaluation data
32
+
33
+ More information needed
34
+
35
+ ## Training procedure
36
+
37
+ ### Training hyperparameters
38
+
39
+ The following hyperparameters were used during training:
40
+ - learning_rate: 2e-05
41
+ - train_batch_size: 8
42
+ - eval_batch_size: 8
43
+ - seed: 42
44
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
45
+ - lr_scheduler_type: linear
46
+ - num_epochs: 100
47
+
48
+ ### Training results
49
+
50
+ | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse |
51
+ |:-------------:|:------:|:----:|:---------------:|:-------:|:------:|:------:|
52
+ | No log | 0.0274 | 2 | 4.3027 | -0.0203 | 4.3027 | 2.0743 |
53
+ | No log | 0.0548 | 4 | 2.5675 | 0.0195 | 2.5675 | 1.6023 |
54
+ | No log | 0.0822 | 6 | 1.4377 | -0.0033 | 1.4377 | 1.1990 |
55
+ | No log | 0.1096 | 8 | 1.0779 | -0.0610 | 1.0779 | 1.0382 |
56
+ | No log | 0.1370 | 10 | 1.0181 | 0.0305 | 1.0181 | 1.0090 |
57
+ | No log | 0.1644 | 12 | 0.9748 | 0.0685 | 0.9748 | 0.9873 |
58
+ | No log | 0.1918 | 14 | 0.8003 | 0.2985 | 0.8003 | 0.8946 |
59
+ | No log | 0.2192 | 16 | 0.8028 | 0.2800 | 0.8028 | 0.8960 |
60
+ | No log | 0.2466 | 18 | 0.7645 | 0.3416 | 0.7645 | 0.8744 |
61
+ | No log | 0.2740 | 20 | 0.8991 | 0.1573 | 0.8991 | 0.9482 |
62
+ | No log | 0.3014 | 22 | 1.4660 | 0.1177 | 1.4660 | 1.2108 |
63
+ | No log | 0.3288 | 24 | 1.4556 | 0.1177 | 1.4556 | 1.2065 |
64
+ | No log | 0.3562 | 26 | 1.1479 | 0.1269 | 1.1479 | 1.0714 |
65
+ | No log | 0.3836 | 28 | 0.8800 | 0.2910 | 0.8800 | 0.9381 |
66
+ | No log | 0.4110 | 30 | 0.6786 | 0.3823 | 0.6786 | 0.8238 |
67
+ | No log | 0.4384 | 32 | 0.6429 | 0.3884 | 0.6429 | 0.8018 |
68
+ | No log | 0.4658 | 34 | 0.6547 | 0.4623 | 0.6547 | 0.8091 |
69
+ | No log | 0.4932 | 36 | 0.6784 | 0.3791 | 0.6784 | 0.8236 |
70
+ | No log | 0.5205 | 38 | 0.8204 | 0.3628 | 0.8204 | 0.9058 |
71
+ | No log | 0.5479 | 40 | 1.1791 | 0.2275 | 1.1791 | 1.0859 |
72
+ | No log | 0.5753 | 42 | 1.1509 | 0.3110 | 1.1509 | 1.0728 |
73
+ | No log | 0.6027 | 44 | 1.0691 | 0.3587 | 1.0691 | 1.0340 |
74
+ | No log | 0.6301 | 46 | 1.0637 | 0.3419 | 1.0637 | 1.0314 |
75
+ | No log | 0.6575 | 48 | 0.9452 | 0.3613 | 0.9452 | 0.9722 |
76
+ | No log | 0.6849 | 50 | 0.9870 | 0.3184 | 0.9870 | 0.9935 |
77
+ | No log | 0.7123 | 52 | 1.0974 | 0.2991 | 1.0974 | 1.0476 |
78
+ | No log | 0.7397 | 54 | 0.9759 | 0.3345 | 0.9759 | 0.9879 |
79
+ | No log | 0.7671 | 56 | 1.1684 | 0.3374 | 1.1684 | 1.0809 |
80
+ | No log | 0.7945 | 58 | 1.1099 | 0.3797 | 1.1099 | 1.0535 |
81
+ | No log | 0.8219 | 60 | 0.6965 | 0.4432 | 0.6965 | 0.8345 |
82
+ | No log | 0.8493 | 62 | 0.5851 | 0.4713 | 0.5851 | 0.7649 |
83
+ | No log | 0.8767 | 64 | 0.6561 | 0.4420 | 0.6561 | 0.8100 |
84
+ | No log | 0.9041 | 66 | 0.8850 | 0.3842 | 0.8850 | 0.9407 |
85
+ | No log | 0.9315 | 68 | 1.0112 | 0.3280 | 1.0112 | 1.0056 |
86
+ | No log | 0.9589 | 70 | 0.8667 | 0.4040 | 0.8667 | 0.9310 |
87
+ | No log | 0.9863 | 72 | 0.8757 | 0.3929 | 0.8757 | 0.9358 |
88
+ | No log | 1.0137 | 74 | 0.6818 | 0.4911 | 0.6818 | 0.8257 |
89
+ | No log | 1.0411 | 76 | 0.6516 | 0.5470 | 0.6516 | 0.8072 |
90
+ | No log | 1.0685 | 78 | 0.6555 | 0.5812 | 0.6555 | 0.8096 |
91
+ | No log | 1.0959 | 80 | 0.7635 | 0.5200 | 0.7635 | 0.8738 |
92
+ | No log | 1.1233 | 82 | 0.6957 | 0.4842 | 0.6957 | 0.8341 |
93
+ | No log | 1.1507 | 84 | 0.8596 | 0.3741 | 0.8596 | 0.9272 |
94
+ | No log | 1.1781 | 86 | 1.3397 | 0.2955 | 1.3397 | 1.1575 |
95
+ | No log | 1.2055 | 88 | 1.7713 | 0.2257 | 1.7713 | 1.3309 |
96
+ | No log | 1.2329 | 90 | 1.9554 | 0.1976 | 1.9554 | 1.3984 |
97
+ | No log | 1.2603 | 92 | 1.6424 | 0.1514 | 1.6424 | 1.2816 |
98
+ | No log | 1.2877 | 94 | 1.1393 | 0.1182 | 1.1393 | 1.0674 |
99
+ | No log | 1.3151 | 96 | 0.9060 | 0.1903 | 0.9060 | 0.9519 |
100
+ | No log | 1.3425 | 98 | 0.7932 | 0.2757 | 0.7932 | 0.8906 |
101
+ | No log | 1.3699 | 100 | 0.7448 | 0.2879 | 0.7448 | 0.8630 |
102
+ | No log | 1.3973 | 102 | 0.8697 | 0.2620 | 0.8697 | 0.9326 |
103
+ | No log | 1.4247 | 104 | 0.9274 | 0.2622 | 0.9274 | 0.9630 |
104
+ | No log | 1.4521 | 106 | 0.8817 | 0.2892 | 0.8817 | 0.9390 |
105
+ | No log | 1.4795 | 108 | 1.0131 | 0.2933 | 1.0131 | 1.0065 |
106
+ | No log | 1.5068 | 110 | 0.9697 | 0.3365 | 0.9697 | 0.9847 |
107
+ | No log | 1.5342 | 112 | 0.9593 | 0.3365 | 0.9593 | 0.9794 |
108
+ | No log | 1.5616 | 114 | 1.0369 | 0.35 | 1.0369 | 1.0183 |
109
+ | No log | 1.5890 | 116 | 0.6977 | 0.4413 | 0.6977 | 0.8353 |
110
+ | No log | 1.6164 | 118 | 0.5446 | 0.5151 | 0.5446 | 0.7379 |
111
+ | No log | 1.6438 | 120 | 0.5489 | 0.5428 | 0.5489 | 0.7409 |
112
+ | No log | 1.6712 | 122 | 0.5550 | 0.4505 | 0.5550 | 0.7450 |
113
+ | No log | 1.6986 | 124 | 0.5695 | 0.4316 | 0.5695 | 0.7547 |
114
+ | No log | 1.7260 | 126 | 0.5729 | 0.4933 | 0.5729 | 0.7569 |
115
+ | No log | 1.7534 | 128 | 0.6080 | 0.4315 | 0.6080 | 0.7797 |
116
+ | No log | 1.7808 | 130 | 0.7559 | 0.4060 | 0.7559 | 0.8694 |
117
+ | No log | 1.8082 | 132 | 0.7738 | 0.4062 | 0.7738 | 0.8797 |
118
+ | No log | 1.8356 | 134 | 0.6581 | 0.4707 | 0.6581 | 0.8112 |
119
+ | No log | 1.8630 | 136 | 0.6210 | 0.5444 | 0.6210 | 0.7880 |
120
+ | No log | 1.8904 | 138 | 0.6441 | 0.5787 | 0.6441 | 0.8025 |
121
+ | No log | 1.9178 | 140 | 0.8130 | 0.5067 | 0.8130 | 0.9017 |
122
+ | No log | 1.9452 | 142 | 1.3436 | 0.3498 | 1.3436 | 1.1591 |
123
+ | No log | 1.9726 | 144 | 1.2769 | 0.3495 | 1.2769 | 1.1300 |
124
+ | No log | 2.0 | 146 | 0.8391 | 0.5605 | 0.8391 | 0.9160 |
125
+ | No log | 2.0274 | 148 | 0.6908 | 0.5420 | 0.6908 | 0.8311 |
126
+ | No log | 2.0548 | 150 | 0.6695 | 0.5394 | 0.6695 | 0.8183 |
127
+ | No log | 2.0822 | 152 | 0.7088 | 0.5664 | 0.7088 | 0.8419 |
128
+ | No log | 2.1096 | 154 | 0.7502 | 0.4329 | 0.7502 | 0.8662 |
129
+ | No log | 2.1370 | 156 | 0.6460 | 0.5214 | 0.6460 | 0.8038 |
130
+ | No log | 2.1644 | 158 | 0.6643 | 0.5067 | 0.6643 | 0.8151 |
131
+ | No log | 2.1918 | 160 | 0.6876 | 0.5031 | 0.6876 | 0.8292 |
132
+ | No log | 2.2192 | 162 | 0.6710 | 0.5202 | 0.6710 | 0.8191 |
133
+ | No log | 2.2466 | 164 | 0.6903 | 0.5237 | 0.6903 | 0.8308 |
134
+ | No log | 2.2740 | 166 | 0.7302 | 0.5305 | 0.7302 | 0.8545 |
135
+ | No log | 2.3014 | 168 | 0.7271 | 0.5381 | 0.7271 | 0.8527 |
136
+ | No log | 2.3288 | 170 | 0.6925 | 0.5597 | 0.6925 | 0.8322 |
137
+ | No log | 2.3562 | 172 | 0.7392 | 0.4453 | 0.7392 | 0.8598 |
138
+ | No log | 2.3836 | 174 | 0.6517 | 0.4210 | 0.6517 | 0.8073 |
139
+ | No log | 2.4110 | 176 | 0.6019 | 0.5451 | 0.6019 | 0.7758 |
140
+ | No log | 2.4384 | 178 | 0.8344 | 0.4569 | 0.8344 | 0.9135 |
141
+ | No log | 2.4658 | 180 | 0.8444 | 0.4652 | 0.8444 | 0.9189 |
142
+ | No log | 2.4932 | 182 | 0.6793 | 0.4899 | 0.6793 | 0.8242 |
143
+ | No log | 2.5205 | 184 | 0.6119 | 0.5214 | 0.6119 | 0.7823 |
144
+ | No log | 2.5479 | 186 | 0.7043 | 0.4804 | 0.7043 | 0.8392 |
145
+ | No log | 2.5753 | 188 | 0.6694 | 0.5149 | 0.6694 | 0.8182 |
146
+ | No log | 2.6027 | 190 | 0.6111 | 0.5752 | 0.6111 | 0.7817 |
147
+ | No log | 2.6301 | 192 | 0.6198 | 0.5454 | 0.6198 | 0.7872 |
148
+ | No log | 2.6575 | 194 | 0.6031 | 0.4984 | 0.6031 | 0.7766 |
149
+ | No log | 2.6849 | 196 | 0.5761 | 0.5381 | 0.5761 | 0.7590 |
150
+ | No log | 2.7123 | 198 | 0.6329 | 0.4115 | 0.6329 | 0.7956 |
151
+ | No log | 2.7397 | 200 | 0.6718 | 0.3757 | 0.6718 | 0.8196 |
152
+ | No log | 2.7671 | 202 | 0.6190 | 0.3836 | 0.6190 | 0.7868 |
153
+ | No log | 2.7945 | 204 | 0.5883 | 0.3644 | 0.5883 | 0.7670 |
154
+ | No log | 2.8219 | 206 | 0.6953 | 0.4290 | 0.6953 | 0.8338 |
155
+ | No log | 2.8493 | 208 | 0.8069 | 0.4710 | 0.8069 | 0.8983 |
156
+ | No log | 2.8767 | 210 | 0.8047 | 0.4835 | 0.8047 | 0.8970 |
157
+ | No log | 2.9041 | 212 | 0.6617 | 0.5109 | 0.6617 | 0.8134 |
158
+ | No log | 2.9315 | 214 | 0.6190 | 0.5958 | 0.6190 | 0.7868 |
159
+ | No log | 2.9589 | 216 | 0.6194 | 0.6187 | 0.6194 | 0.7870 |
160
+ | No log | 2.9863 | 218 | 0.6383 | 0.5560 | 0.6383 | 0.7989 |
161
+ | No log | 3.0137 | 220 | 0.7739 | 0.4729 | 0.7739 | 0.8797 |
162
+ | No log | 3.0411 | 222 | 0.8430 | 0.4271 | 0.8430 | 0.9181 |
163
+ | No log | 3.0685 | 224 | 0.7115 | 0.4604 | 0.7115 | 0.8435 |
164
+ | No log | 3.0959 | 226 | 0.5867 | 0.4904 | 0.5867 | 0.7660 |
165
+ | No log | 3.1233 | 228 | 0.5883 | 0.4737 | 0.5883 | 0.7670 |
166
+ | No log | 3.1507 | 230 | 0.5986 | 0.5290 | 0.5986 | 0.7737 |
167
+ | No log | 3.1781 | 232 | 0.6450 | 0.4834 | 0.6450 | 0.8031 |
168
+ | No log | 3.2055 | 234 | 0.6724 | 0.4915 | 0.6724 | 0.8200 |
169
+ | No log | 3.2329 | 236 | 0.6390 | 0.4838 | 0.6390 | 0.7994 |
170
+ | No log | 3.2603 | 238 | 0.6108 | 0.5402 | 0.6108 | 0.7815 |
171
+ | No log | 3.2877 | 240 | 0.6183 | 0.5041 | 0.6183 | 0.7863 |
172
+ | No log | 3.3151 | 242 | 0.6116 | 0.5652 | 0.6116 | 0.7821 |
173
+ | No log | 3.3425 | 244 | 0.6152 | 0.5651 | 0.6152 | 0.7844 |
174
+ | No log | 3.3699 | 246 | 0.6415 | 0.4903 | 0.6415 | 0.8009 |
175
+ | No log | 3.3973 | 248 | 0.7563 | 0.4544 | 0.7563 | 0.8697 |
176
+ | No log | 3.4247 | 250 | 0.7721 | 0.4449 | 0.7721 | 0.8787 |
177
+ | No log | 3.4521 | 252 | 0.6832 | 0.5376 | 0.6832 | 0.8265 |
178
+ | No log | 3.4795 | 254 | 0.6635 | 0.5160 | 0.6635 | 0.8145 |
179
+ | No log | 3.5068 | 256 | 0.6511 | 0.5586 | 0.6511 | 0.8069 |
180
+ | No log | 3.5342 | 258 | 0.6117 | 0.5111 | 0.6117 | 0.7821 |
181
+ | No log | 3.5616 | 260 | 0.6182 | 0.5382 | 0.6182 | 0.7862 |
182
+ | No log | 3.5890 | 262 | 0.6331 | 0.5132 | 0.6331 | 0.7957 |
183
+ | No log | 3.6164 | 264 | 0.6502 | 0.4892 | 0.6502 | 0.8064 |
184
+ | No log | 3.6438 | 266 | 0.6250 | 0.4989 | 0.6250 | 0.7906 |
185
+ | No log | 3.6712 | 268 | 0.5860 | 0.5033 | 0.5860 | 0.7655 |
186
+ | No log | 3.6986 | 270 | 0.5772 | 0.5109 | 0.5772 | 0.7597 |
187
+ | No log | 3.7260 | 272 | 0.5808 | 0.5507 | 0.5808 | 0.7621 |
188
+ | No log | 3.7534 | 274 | 0.5861 | 0.5421 | 0.5861 | 0.7655 |
189
+ | No log | 3.7808 | 276 | 0.5881 | 0.5073 | 0.5881 | 0.7669 |
190
+ | No log | 3.8082 | 278 | 0.5886 | 0.5656 | 0.5886 | 0.7672 |
191
+ | No log | 3.8356 | 280 | 0.6042 | 0.5185 | 0.6042 | 0.7773 |
192
+ | No log | 3.8630 | 282 | 0.6275 | 0.4970 | 0.6275 | 0.7922 |
193
+ | No log | 3.8904 | 284 | 0.6037 | 0.5272 | 0.6037 | 0.7770 |
194
+ | No log | 3.9178 | 286 | 0.5717 | 0.5263 | 0.5717 | 0.7561 |
195
+ | No log | 3.9452 | 288 | 0.5831 | 0.4842 | 0.5831 | 0.7636 |
196
+ | No log | 3.9726 | 290 | 0.5702 | 0.5148 | 0.5702 | 0.7551 |
197
+ | No log | 4.0 | 292 | 0.5604 | 0.5647 | 0.5604 | 0.7486 |
198
+ | No log | 4.0274 | 294 | 0.5661 | 0.5585 | 0.5661 | 0.7524 |
199
+ | No log | 4.0548 | 296 | 0.5942 | 0.5438 | 0.5942 | 0.7709 |
200
+ | No log | 4.0822 | 298 | 0.6024 | 0.5325 | 0.6024 | 0.7762 |
201
+ | No log | 4.1096 | 300 | 0.6017 | 0.5723 | 0.6017 | 0.7757 |
202
+ | No log | 4.1370 | 302 | 0.6052 | 0.5358 | 0.6052 | 0.7779 |
203
+ | No log | 4.1644 | 304 | 0.6026 | 0.5697 | 0.6026 | 0.7763 |
204
+ | No log | 4.1918 | 306 | 0.6063 | 0.5499 | 0.6063 | 0.7786 |
205
+ | No log | 4.2192 | 308 | 0.5962 | 0.5499 | 0.5962 | 0.7721 |
206
+ | No log | 4.2466 | 310 | 0.5727 | 0.5762 | 0.5727 | 0.7567 |
207
+ | No log | 4.2740 | 312 | 0.5761 | 0.5745 | 0.5761 | 0.7590 |
208
+ | No log | 4.3014 | 314 | 0.6277 | 0.4589 | 0.6277 | 0.7923 |
209
+ | No log | 4.3288 | 316 | 0.6329 | 0.4651 | 0.6329 | 0.7955 |
210
+ | No log | 4.3562 | 318 | 0.5863 | 0.5556 | 0.5863 | 0.7657 |
211
+ | No log | 4.3836 | 320 | 0.6012 | 0.5148 | 0.6012 | 0.7754 |
212
+ | No log | 4.4110 | 322 | 0.5897 | 0.4696 | 0.5897 | 0.7679 |
213
+ | No log | 4.4384 | 324 | 0.6055 | 0.4763 | 0.6055 | 0.7781 |
214
+ | No log | 4.4658 | 326 | 0.6605 | 0.4691 | 0.6605 | 0.8127 |
215
+ | No log | 4.4932 | 328 | 0.6487 | 0.4830 | 0.6487 | 0.8054 |
216
+ | No log | 4.5205 | 330 | 0.5873 | 0.4226 | 0.5873 | 0.7663 |
217
+ | No log | 4.5479 | 332 | 0.5881 | 0.4635 | 0.5881 | 0.7669 |
218
+ | No log | 4.5753 | 334 | 0.5933 | 0.4602 | 0.5933 | 0.7703 |
219
+ | No log | 4.6027 | 336 | 0.5787 | 0.4672 | 0.5787 | 0.7607 |
220
+ | No log | 4.6301 | 338 | 0.6294 | 0.5253 | 0.6294 | 0.7934 |
221
+ | No log | 4.6575 | 340 | 0.6736 | 0.4922 | 0.6736 | 0.8207 |
222
+ | No log | 4.6849 | 342 | 0.6165 | 0.4847 | 0.6165 | 0.7852 |
223
+ | No log | 4.7123 | 344 | 0.5739 | 0.4675 | 0.5739 | 0.7575 |
224
+ | No log | 4.7397 | 346 | 0.6698 | 0.4271 | 0.6698 | 0.8184 |
225
+ | No log | 4.7671 | 348 | 0.7839 | 0.4467 | 0.7839 | 0.8854 |
226
+ | No log | 4.7945 | 350 | 0.7272 | 0.4208 | 0.7272 | 0.8527 |
227
+ | No log | 4.8219 | 352 | 0.6028 | 0.4921 | 0.6028 | 0.7764 |
228
+ | No log | 4.8493 | 354 | 0.5677 | 0.4900 | 0.5677 | 0.7534 |
229
+ | No log | 4.8767 | 356 | 0.5819 | 0.4455 | 0.5819 | 0.7628 |
230
+ | No log | 4.9041 | 358 | 0.5743 | 0.4588 | 0.5743 | 0.7578 |
231
+ | No log | 4.9315 | 360 | 0.5758 | 0.4748 | 0.5758 | 0.7588 |
232
+ | No log | 4.9589 | 362 | 0.6771 | 0.3775 | 0.6771 | 0.8228 |
233
+ | No log | 4.9863 | 364 | 0.7236 | 0.3898 | 0.7236 | 0.8507 |
234
+ | No log | 5.0137 | 366 | 0.6944 | 0.3511 | 0.6944 | 0.8333 |
235
+ | No log | 5.0411 | 368 | 0.6056 | 0.4337 | 0.6056 | 0.7782 |
236
+ | No log | 5.0685 | 370 | 0.5702 | 0.4280 | 0.5702 | 0.7551 |
237
+ | No log | 5.0959 | 372 | 0.5634 | 0.5279 | 0.5634 | 0.7506 |
238
+ | No log | 5.1233 | 374 | 0.5581 | 0.5143 | 0.5581 | 0.7471 |
239
+ | No log | 5.1507 | 376 | 0.5917 | 0.4932 | 0.5917 | 0.7692 |
240
+ | No log | 5.1781 | 378 | 0.6309 | 0.5236 | 0.6309 | 0.7943 |
241
+ | No log | 5.2055 | 380 | 0.6288 | 0.5301 | 0.6288 | 0.7930 |
242
+ | No log | 5.2329 | 382 | 0.5888 | 0.5355 | 0.5888 | 0.7674 |
243
+ | No log | 5.2603 | 384 | 0.5783 | 0.5205 | 0.5783 | 0.7604 |
244
+ | No log | 5.2877 | 386 | 0.5863 | 0.5301 | 0.5863 | 0.7657 |
245
+ | No log | 5.3151 | 388 | 0.5813 | 0.5179 | 0.5813 | 0.7624 |
246
+ | No log | 5.3425 | 390 | 0.5779 | 0.4625 | 0.5779 | 0.7602 |
247
+ | No log | 5.3699 | 392 | 0.5798 | 0.4871 | 0.5798 | 0.7615 |
248
+ | No log | 5.3973 | 394 | 0.5976 | 0.4715 | 0.5976 | 0.7731 |
249
+ | No log | 5.4247 | 396 | 0.5982 | 0.4917 | 0.5982 | 0.7734 |
250
+ | No log | 5.4521 | 398 | 0.5858 | 0.5610 | 0.5858 | 0.7654 |
251
+ | No log | 5.4795 | 400 | 0.6416 | 0.4603 | 0.6416 | 0.8010 |
252
+ | No log | 5.5068 | 402 | 0.6338 | 0.4672 | 0.6338 | 0.7961 |
253
+ | No log | 5.5342 | 404 | 0.6007 | 0.5159 | 0.6007 | 0.7750 |
254
+ | No log | 5.5616 | 406 | 0.5870 | 0.5632 | 0.5870 | 0.7661 |
255
+ | No log | 5.5890 | 408 | 0.5906 | 0.4419 | 0.5906 | 0.7685 |
256
+ | No log | 5.6164 | 410 | 0.5825 | 0.4454 | 0.5825 | 0.7632 |
257
+ | No log | 5.6438 | 412 | 0.5807 | 0.4865 | 0.5807 | 0.7620 |
258
+ | No log | 5.6712 | 414 | 0.5805 | 0.5276 | 0.5805 | 0.7619 |
259
+ | No log | 5.6986 | 416 | 0.5748 | 0.5081 | 0.5748 | 0.7581 |
260
+ | No log | 5.7260 | 418 | 0.5794 | 0.5276 | 0.5794 | 0.7612 |
261
+ | No log | 5.7534 | 420 | 0.5856 | 0.5304 | 0.5856 | 0.7653 |
262
+ | No log | 5.7808 | 422 | 0.6052 | 0.5011 | 0.6052 | 0.7779 |
263
+ | No log | 5.8082 | 424 | 0.6421 | 0.4924 | 0.6421 | 0.8013 |
264
+ | No log | 5.8356 | 426 | 0.6061 | 0.5092 | 0.6061 | 0.7786 |
265
+ | No log | 5.8630 | 428 | 0.5797 | 0.4833 | 0.5797 | 0.7614 |
266
+ | No log | 5.8904 | 430 | 0.5759 | 0.5171 | 0.5759 | 0.7589 |
267
+ | No log | 5.9178 | 432 | 0.5746 | 0.5372 | 0.5746 | 0.7580 |
268
+ | No log | 5.9452 | 434 | 0.5870 | 0.5539 | 0.5870 | 0.7662 |
269
+ | No log | 5.9726 | 436 | 0.5786 | 0.5628 | 0.5786 | 0.7607 |
270
+ | No log | 6.0 | 438 | 0.5671 | 0.5371 | 0.5671 | 0.7530 |
271
+ | No log | 6.0274 | 440 | 0.5870 | 0.5420 | 0.5870 | 0.7661 |
272
+ | No log | 6.0548 | 442 | 0.6421 | 0.5425 | 0.6421 | 0.8013 |
273
+ | No log | 6.0822 | 444 | 0.6254 | 0.5425 | 0.6254 | 0.7908 |
274
+ | No log | 6.1096 | 446 | 0.5655 | 0.5262 | 0.5655 | 0.7520 |
275
+ | No log | 6.1370 | 448 | 0.5436 | 0.5218 | 0.5436 | 0.7373 |
276
+ | No log | 6.1644 | 450 | 0.5611 | 0.5116 | 0.5611 | 0.7491 |
277
+ | No log | 6.1918 | 452 | 0.5610 | 0.5116 | 0.5610 | 0.7490 |
278
+ | No log | 6.2192 | 454 | 0.5537 | 0.5318 | 0.5537 | 0.7441 |
279
+ | No log | 6.2466 | 456 | 0.5393 | 0.5547 | 0.5393 | 0.7343 |
280
+ | No log | 6.2740 | 458 | 0.5382 | 0.5327 | 0.5382 | 0.7336 |
281
+ | No log | 6.3014 | 460 | 0.5470 | 0.4850 | 0.5470 | 0.7396 |
282
+ | No log | 6.3288 | 462 | 0.5485 | 0.5362 | 0.5485 | 0.7406 |
283
+ | No log | 6.3562 | 464 | 0.5721 | 0.5356 | 0.5721 | 0.7564 |
284
+ | No log | 6.3836 | 466 | 0.6118 | 0.5571 | 0.6118 | 0.7822 |
285
+ | No log | 6.4110 | 468 | 0.6059 | 0.5432 | 0.6059 | 0.7784 |
286
+ | No log | 6.4384 | 470 | 0.5649 | 0.4779 | 0.5649 | 0.7516 |
287
+ | No log | 6.4658 | 472 | 0.6066 | 0.4300 | 0.6066 | 0.7788 |
288
+ | No log | 6.4932 | 474 | 0.6409 | 0.3868 | 0.6409 | 0.8005 |
289
+ | No log | 6.5205 | 476 | 0.6419 | 0.3977 | 0.6419 | 0.8012 |
290
+ | No log | 6.5479 | 478 | 0.5885 | 0.4228 | 0.5885 | 0.7672 |
291
+ | No log | 6.5753 | 480 | 0.5521 | 0.5087 | 0.5521 | 0.7430 |
292
+ | No log | 6.6027 | 482 | 0.5537 | 0.5019 | 0.5537 | 0.7441 |
293
+ | No log | 6.6301 | 484 | 0.5620 | 0.4903 | 0.5620 | 0.7497 |
294
+ | No log | 6.6575 | 486 | 0.5659 | 0.5305 | 0.5659 | 0.7523 |
295
+ | No log | 6.6849 | 488 | 0.5597 | 0.5531 | 0.5597 | 0.7481 |
296
+ | No log | 6.7123 | 490 | 0.5723 | 0.5319 | 0.5723 | 0.7565 |
297
+ | No log | 6.7397 | 492 | 0.5877 | 0.5385 | 0.5877 | 0.7666 |
298
+ | No log | 6.7671 | 494 | 0.5563 | 0.5546 | 0.5563 | 0.7459 |
299
+ | No log | 6.7945 | 496 | 0.5481 | 0.4837 | 0.5481 | 0.7403 |
300
+ | No log | 6.8219 | 498 | 0.5560 | 0.4807 | 0.5560 | 0.7456 |
301
+ | 0.3983 | 6.8493 | 500 | 0.5904 | 0.5345 | 0.5904 | 0.7684 |
302
+ | 0.3983 | 6.8767 | 502 | 0.6360 | 0.5217 | 0.6360 | 0.7975 |
303
+ | 0.3983 | 6.9041 | 504 | 0.6332 | 0.5026 | 0.6332 | 0.7957 |
304
+ | 0.3983 | 6.9315 | 506 | 0.5877 | 0.5248 | 0.5877 | 0.7666 |
305
+ | 0.3983 | 6.9589 | 508 | 0.6013 | 0.5544 | 0.6013 | 0.7754 |
306
+ | 0.3983 | 6.9863 | 510 | 0.6121 | 0.5386 | 0.6121 | 0.7824 |
307
+ | 0.3983 | 7.0137 | 512 | 0.6178 | 0.5426 | 0.6178 | 0.7860 |
308
+ | 0.3983 | 7.0411 | 514 | 0.6024 | 0.5438 | 0.6024 | 0.7762 |
309
+ | 0.3983 | 7.0685 | 516 | 0.5879 | 0.5470 | 0.5879 | 0.7667 |
310
+ | 0.3983 | 7.0959 | 518 | 0.5766 | 0.4970 | 0.5766 | 0.7594 |
311
+ | 0.3983 | 7.1233 | 520 | 0.5841 | 0.5147 | 0.5841 | 0.7643 |
312
+ | 0.3983 | 7.1507 | 522 | 0.6004 | 0.5344 | 0.6004 | 0.7749 |
313
+ | 0.3983 | 7.1781 | 524 | 0.5911 | 0.5228 | 0.5911 | 0.7688 |
314
+ | 0.3983 | 7.2055 | 526 | 0.5699 | 0.4816 | 0.5699 | 0.7549 |
315
+
316
+
317
+ ### Framework versions
318
+
319
+ - Transformers 4.44.2
320
+ - Pytorch 2.4.0+cu118
321
+ - Datasets 2.21.0
322
+ - Tokenizers 0.19.1
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "aubmindlab/bert-base-arabertv02",
3
+ "architectures": [
4
+ "BertForSequenceClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 768,
11
+ "id2label": {
12
+ "0": "LABEL_0"
13
+ },
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "label2id": {
17
+ "LABEL_0": 0
18
+ },
19
+ "layer_norm_eps": 1e-12,
20
+ "max_position_embeddings": 512,
21
+ "model_type": "bert",
22
+ "num_attention_heads": 12,
23
+ "num_hidden_layers": 12,
24
+ "pad_token_id": 0,
25
+ "position_embedding_type": "absolute",
26
+ "problem_type": "regression",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.44.2",
29
+ "type_vocab_size": 2,
30
+ "use_cache": true,
31
+ "vocab_size": 64000
32
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:38fa7fc0c4d7c698876f8b20f176a3bbe57805db19115e6107e68fffa03c9e99
3
+ size 540799996
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5122126cb8418b66c3ea22d3555699577f58ebe9fa857df6273962f7c180df8e
3
+ size 5304