MayBashendy commited on
Commit
87c0a52
·
verified ·
1 Parent(s): 3e565e4

Training in progress, step 500

Browse files
Files changed (4) hide show
  1. README.md +318 -0
  2. config.json +32 -0
  3. model.safetensors +3 -0
  4. training_args.bin +3 -0
README.md ADDED
@@ -0,0 +1,318 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ base_model: aubmindlab/bert-base-arabertv02
4
+ tags:
5
+ - generated_from_trainer
6
+ model-index:
7
+ - name: ArabicNewSplits8_usingALLEssays_FineTuningAraBERT_run2_AugV5_k12_task2_organization
8
+ results: []
9
+ ---
10
+
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
+
14
+ # ArabicNewSplits8_usingALLEssays_FineTuningAraBERT_run2_AugV5_k12_task2_organization
15
+
16
+ This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset.
17
+ It achieves the following results on the evaluation set:
18
+ - Loss: 0.6468
19
+ - Qwk: 0.4617
20
+ - Mse: 0.6468
21
+ - Rmse: 0.8042
22
+
23
+ ## Model description
24
+
25
+ More information needed
26
+
27
+ ## Intended uses & limitations
28
+
29
+ More information needed
30
+
31
+ ## Training and evaluation data
32
+
33
+ More information needed
34
+
35
+ ## Training procedure
36
+
37
+ ### Training hyperparameters
38
+
39
+ The following hyperparameters were used during training:
40
+ - learning_rate: 2e-05
41
+ - train_batch_size: 8
42
+ - eval_batch_size: 8
43
+ - seed: 42
44
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
45
+ - lr_scheduler_type: linear
46
+ - num_epochs: 100
47
+
48
+ ### Training results
49
+
50
+ | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse |
51
+ |:-------------:|:------:|:----:|:---------------:|:-------:|:------:|:------:|
52
+ | No log | 0.0317 | 2 | 4.1985 | -0.0097 | 4.1985 | 2.0490 |
53
+ | No log | 0.0635 | 4 | 2.3389 | 0.0609 | 2.3389 | 1.5293 |
54
+ | No log | 0.0952 | 6 | 1.3887 | 0.0254 | 1.3887 | 1.1784 |
55
+ | No log | 0.1270 | 8 | 1.0340 | -0.0042 | 1.0340 | 1.0169 |
56
+ | No log | 0.1587 | 10 | 0.8402 | 0.1410 | 0.8402 | 0.9166 |
57
+ | No log | 0.1905 | 12 | 0.8571 | 0.0447 | 0.8571 | 0.9258 |
58
+ | No log | 0.2222 | 14 | 1.1039 | -0.0127 | 1.1039 | 1.0507 |
59
+ | No log | 0.2540 | 16 | 1.0242 | 0.0208 | 1.0242 | 1.0120 |
60
+ | No log | 0.2857 | 18 | 1.0984 | 0.0287 | 1.0984 | 1.0480 |
61
+ | No log | 0.3175 | 20 | 0.9593 | 0.1298 | 0.9593 | 0.9794 |
62
+ | No log | 0.3492 | 22 | 1.0632 | 0.1363 | 1.0632 | 1.0311 |
63
+ | No log | 0.3810 | 24 | 0.8693 | 0.2558 | 0.8693 | 0.9324 |
64
+ | No log | 0.4127 | 26 | 1.1422 | 0.2340 | 1.1422 | 1.0687 |
65
+ | No log | 0.4444 | 28 | 1.2859 | 0.2038 | 1.2859 | 1.1340 |
66
+ | No log | 0.4762 | 30 | 1.0016 | 0.2941 | 1.0016 | 1.0008 |
67
+ | No log | 0.5079 | 32 | 0.6653 | 0.3833 | 0.6653 | 0.8156 |
68
+ | No log | 0.5397 | 34 | 0.6925 | 0.3230 | 0.6925 | 0.8321 |
69
+ | No log | 0.5714 | 36 | 0.7306 | 0.3205 | 0.7306 | 0.8548 |
70
+ | No log | 0.6032 | 38 | 0.8142 | 0.3063 | 0.8142 | 0.9023 |
71
+ | No log | 0.6349 | 40 | 0.8084 | 0.3482 | 0.8084 | 0.8991 |
72
+ | No log | 0.6667 | 42 | 0.8385 | 0.2830 | 0.8385 | 0.9157 |
73
+ | No log | 0.6984 | 44 | 1.1997 | 0.2771 | 1.1997 | 1.0953 |
74
+ | No log | 0.7302 | 46 | 1.6326 | 0.1908 | 1.6326 | 1.2777 |
75
+ | No log | 0.7619 | 48 | 1.6272 | 0.2067 | 1.6272 | 1.2756 |
76
+ | No log | 0.7937 | 50 | 1.1244 | 0.2275 | 1.1244 | 1.0604 |
77
+ | No log | 0.8254 | 52 | 0.8440 | 0.2473 | 0.8440 | 0.9187 |
78
+ | No log | 0.8571 | 54 | 0.7300 | 0.3645 | 0.7300 | 0.8544 |
79
+ | No log | 0.8889 | 56 | 0.7630 | 0.3544 | 0.7630 | 0.8735 |
80
+ | No log | 0.9206 | 58 | 0.8919 | 0.2051 | 0.8919 | 0.9444 |
81
+ | No log | 0.9524 | 60 | 1.0523 | 0.1590 | 1.0523 | 1.0258 |
82
+ | No log | 0.9841 | 62 | 1.0067 | 0.1808 | 1.0067 | 1.0034 |
83
+ | No log | 1.0159 | 64 | 0.9447 | 0.2086 | 0.9447 | 0.9720 |
84
+ | No log | 1.0476 | 66 | 0.8764 | 0.1992 | 0.8764 | 0.9361 |
85
+ | No log | 1.0794 | 68 | 0.8308 | 0.2396 | 0.8308 | 0.9115 |
86
+ | No log | 1.1111 | 70 | 0.9603 | 0.3266 | 0.9603 | 0.9799 |
87
+ | No log | 1.1429 | 72 | 1.2139 | 0.2778 | 1.2139 | 1.1018 |
88
+ | No log | 1.1746 | 74 | 1.0292 | 0.3679 | 1.0292 | 1.0145 |
89
+ | No log | 1.2063 | 76 | 0.7608 | 0.3933 | 0.7608 | 0.8722 |
90
+ | No log | 1.2381 | 78 | 0.6512 | 0.4590 | 0.6512 | 0.8070 |
91
+ | No log | 1.2698 | 80 | 0.6483 | 0.4420 | 0.6483 | 0.8052 |
92
+ | No log | 1.3016 | 82 | 0.6950 | 0.4260 | 0.6950 | 0.8337 |
93
+ | No log | 1.3333 | 84 | 0.7048 | 0.4519 | 0.7048 | 0.8396 |
94
+ | No log | 1.3651 | 86 | 0.7372 | 0.4297 | 0.7372 | 0.8586 |
95
+ | No log | 1.3968 | 88 | 0.7111 | 0.4691 | 0.7111 | 0.8433 |
96
+ | No log | 1.4286 | 90 | 0.6758 | 0.4643 | 0.6758 | 0.8221 |
97
+ | No log | 1.4603 | 92 | 0.6958 | 0.4707 | 0.6958 | 0.8341 |
98
+ | No log | 1.4921 | 94 | 0.7769 | 0.4336 | 0.7769 | 0.8814 |
99
+ | No log | 1.5238 | 96 | 1.0442 | 0.3690 | 1.0442 | 1.0219 |
100
+ | No log | 1.5556 | 98 | 1.0660 | 0.3389 | 1.0660 | 1.0325 |
101
+ | No log | 1.5873 | 100 | 0.7735 | 0.3181 | 0.7735 | 0.8795 |
102
+ | No log | 1.6190 | 102 | 0.6747 | 0.3672 | 0.6747 | 0.8214 |
103
+ | No log | 1.6508 | 104 | 0.6733 | 0.3640 | 0.6733 | 0.8205 |
104
+ | No log | 1.6825 | 106 | 0.7902 | 0.3555 | 0.7902 | 0.8889 |
105
+ | No log | 1.7143 | 108 | 1.0763 | 0.3673 | 1.0763 | 1.0375 |
106
+ | No log | 1.7460 | 110 | 1.1485 | 0.3581 | 1.1485 | 1.0717 |
107
+ | No log | 1.7778 | 112 | 0.9092 | 0.3950 | 0.9092 | 0.9535 |
108
+ | No log | 1.8095 | 114 | 0.7695 | 0.3281 | 0.7695 | 0.8772 |
109
+ | No log | 1.8413 | 116 | 0.7634 | 0.3614 | 0.7634 | 0.8737 |
110
+ | No log | 1.8730 | 118 | 0.8207 | 0.4102 | 0.8207 | 0.9059 |
111
+ | No log | 1.9048 | 120 | 1.0257 | 0.4551 | 1.0257 | 1.0128 |
112
+ | No log | 1.9365 | 122 | 0.9929 | 0.4685 | 0.9929 | 0.9965 |
113
+ | No log | 1.9683 | 124 | 0.7427 | 0.4134 | 0.7427 | 0.8618 |
114
+ | No log | 2.0 | 126 | 0.6762 | 0.4837 | 0.6762 | 0.8223 |
115
+ | No log | 2.0317 | 128 | 0.6480 | 0.4257 | 0.6480 | 0.8050 |
116
+ | No log | 2.0635 | 130 | 0.6444 | 0.3738 | 0.6444 | 0.8028 |
117
+ | No log | 2.0952 | 132 | 0.7345 | 0.4020 | 0.7345 | 0.8570 |
118
+ | No log | 2.1270 | 134 | 0.8672 | 0.4290 | 0.8672 | 0.9312 |
119
+ | No log | 2.1587 | 136 | 0.9554 | 0.4172 | 0.9554 | 0.9774 |
120
+ | No log | 2.1905 | 138 | 0.8992 | 0.4145 | 0.8992 | 0.9483 |
121
+ | No log | 2.2222 | 140 | 0.8570 | 0.4258 | 0.8570 | 0.9258 |
122
+ | No log | 2.2540 | 142 | 0.6909 | 0.4308 | 0.6909 | 0.8312 |
123
+ | No log | 2.2857 | 144 | 0.6653 | 0.4853 | 0.6653 | 0.8156 |
124
+ | No log | 2.3175 | 146 | 0.7009 | 0.5102 | 0.7009 | 0.8372 |
125
+ | No log | 2.3492 | 148 | 0.7075 | 0.5620 | 0.7075 | 0.8412 |
126
+ | No log | 2.3810 | 150 | 0.8354 | 0.4990 | 0.8354 | 0.9140 |
127
+ | No log | 2.4127 | 152 | 0.8771 | 0.4824 | 0.8771 | 0.9365 |
128
+ | No log | 2.4444 | 154 | 1.0004 | 0.3834 | 1.0004 | 1.0002 |
129
+ | No log | 2.4762 | 156 | 0.9419 | 0.3670 | 0.9419 | 0.9705 |
130
+ | No log | 2.5079 | 158 | 0.9602 | 0.3670 | 0.9602 | 0.9799 |
131
+ | No log | 2.5397 | 160 | 0.8200 | 0.4941 | 0.8200 | 0.9056 |
132
+ | No log | 2.5714 | 162 | 0.8522 | 0.4330 | 0.8522 | 0.9231 |
133
+ | No log | 2.6032 | 164 | 0.7161 | 0.5053 | 0.7161 | 0.8462 |
134
+ | No log | 2.6349 | 166 | 0.7169 | 0.4996 | 0.7169 | 0.8467 |
135
+ | No log | 2.6667 | 168 | 0.8542 | 0.4521 | 0.8542 | 0.9242 |
136
+ | No log | 2.6984 | 170 | 1.0408 | 0.3563 | 1.0408 | 1.0202 |
137
+ | No log | 2.7302 | 172 | 0.8155 | 0.4280 | 0.8155 | 0.9031 |
138
+ | No log | 2.7619 | 174 | 0.6945 | 0.4898 | 0.6945 | 0.8334 |
139
+ | No log | 2.7937 | 176 | 0.6694 | 0.4345 | 0.6694 | 0.8182 |
140
+ | No log | 2.8254 | 178 | 0.6659 | 0.4241 | 0.6659 | 0.8160 |
141
+ | No log | 2.8571 | 180 | 0.7606 | 0.3964 | 0.7606 | 0.8721 |
142
+ | No log | 2.8889 | 182 | 0.7990 | 0.3795 | 0.7990 | 0.8939 |
143
+ | No log | 2.9206 | 184 | 0.7722 | 0.4240 | 0.7722 | 0.8787 |
144
+ | No log | 2.9524 | 186 | 0.7273 | 0.4113 | 0.7273 | 0.8528 |
145
+ | No log | 2.9841 | 188 | 0.7928 | 0.4033 | 0.7928 | 0.8904 |
146
+ | No log | 3.0159 | 190 | 0.7647 | 0.4425 | 0.7647 | 0.8745 |
147
+ | No log | 3.0476 | 192 | 0.8654 | 0.3742 | 0.8654 | 0.9303 |
148
+ | No log | 3.0794 | 194 | 1.1018 | 0.3700 | 1.1018 | 1.0497 |
149
+ | No log | 3.1111 | 196 | 0.9714 | 0.3796 | 0.9714 | 0.9856 |
150
+ | No log | 3.1429 | 198 | 0.7754 | 0.4422 | 0.7754 | 0.8805 |
151
+ | No log | 3.1746 | 200 | 0.6841 | 0.4497 | 0.6841 | 0.8271 |
152
+ | No log | 3.2063 | 202 | 0.6570 | 0.4049 | 0.6570 | 0.8105 |
153
+ | No log | 3.2381 | 204 | 0.6857 | 0.4398 | 0.6857 | 0.8281 |
154
+ | No log | 3.2698 | 206 | 0.7655 | 0.4252 | 0.7655 | 0.8749 |
155
+ | No log | 3.3016 | 208 | 0.7268 | 0.4410 | 0.7268 | 0.8525 |
156
+ | No log | 3.3333 | 210 | 0.6673 | 0.4874 | 0.6673 | 0.8169 |
157
+ | No log | 3.3651 | 212 | 0.7260 | 0.4553 | 0.7260 | 0.8520 |
158
+ | No log | 3.3968 | 214 | 0.8206 | 0.4075 | 0.8206 | 0.9059 |
159
+ | No log | 3.4286 | 216 | 0.7519 | 0.4461 | 0.7519 | 0.8671 |
160
+ | No log | 3.4603 | 218 | 0.7193 | 0.5170 | 0.7194 | 0.8481 |
161
+ | No log | 3.4921 | 220 | 0.7384 | 0.4849 | 0.7384 | 0.8593 |
162
+ | No log | 3.5238 | 222 | 0.7119 | 0.5197 | 0.7119 | 0.8437 |
163
+ | No log | 3.5556 | 224 | 0.7124 | 0.4656 | 0.7124 | 0.8440 |
164
+ | No log | 3.5873 | 226 | 0.7763 | 0.4065 | 0.7763 | 0.8811 |
165
+ | No log | 3.6190 | 228 | 0.7239 | 0.4628 | 0.7239 | 0.8508 |
166
+ | No log | 3.6508 | 230 | 0.7355 | 0.4361 | 0.7355 | 0.8576 |
167
+ | No log | 3.6825 | 232 | 0.7074 | 0.4097 | 0.7074 | 0.8410 |
168
+ | No log | 3.7143 | 234 | 0.7182 | 0.4153 | 0.7182 | 0.8475 |
169
+ | No log | 3.7460 | 236 | 0.7361 | 0.4051 | 0.7361 | 0.8579 |
170
+ | No log | 3.7778 | 238 | 0.7425 | 0.4419 | 0.7425 | 0.8617 |
171
+ | No log | 3.8095 | 240 | 0.7510 | 0.4477 | 0.7510 | 0.8666 |
172
+ | No log | 3.8413 | 242 | 0.7481 | 0.4813 | 0.7481 | 0.8649 |
173
+ | No log | 3.8730 | 244 | 0.7766 | 0.4279 | 0.7766 | 0.8812 |
174
+ | No log | 3.9048 | 246 | 0.7553 | 0.4472 | 0.7553 | 0.8691 |
175
+ | No log | 3.9365 | 248 | 0.7446 | 0.4592 | 0.7446 | 0.8629 |
176
+ | No log | 3.9683 | 250 | 0.7951 | 0.4476 | 0.7951 | 0.8917 |
177
+ | No log | 4.0 | 252 | 0.7595 | 0.4588 | 0.7595 | 0.8715 |
178
+ | No log | 4.0317 | 254 | 0.6920 | 0.4310 | 0.6920 | 0.8319 |
179
+ | No log | 4.0635 | 256 | 0.6952 | 0.3562 | 0.6952 | 0.8338 |
180
+ | No log | 4.0952 | 258 | 0.6660 | 0.2709 | 0.6660 | 0.8161 |
181
+ | No log | 4.1270 | 260 | 0.6759 | 0.3952 | 0.6759 | 0.8221 |
182
+ | No log | 4.1587 | 262 | 0.7101 | 0.3425 | 0.7101 | 0.8427 |
183
+ | No log | 4.1905 | 264 | 0.8133 | 0.3926 | 0.8133 | 0.9018 |
184
+ | No log | 4.2222 | 266 | 0.7580 | 0.3699 | 0.7580 | 0.8707 |
185
+ | No log | 4.2540 | 268 | 0.7293 | 0.4621 | 0.7293 | 0.8540 |
186
+ | No log | 4.2857 | 270 | 0.7459 | 0.4545 | 0.7459 | 0.8636 |
187
+ | No log | 4.3175 | 272 | 0.7806 | 0.4927 | 0.7806 | 0.8835 |
188
+ | No log | 4.3492 | 274 | 0.9133 | 0.3753 | 0.9133 | 0.9557 |
189
+ | No log | 4.3810 | 276 | 1.0909 | 0.3795 | 1.0909 | 1.0445 |
190
+ | No log | 4.4127 | 278 | 0.9129 | 0.3876 | 0.9129 | 0.9555 |
191
+ | No log | 4.4444 | 280 | 0.6822 | 0.3725 | 0.6822 | 0.8260 |
192
+ | No log | 4.4762 | 282 | 0.7058 | 0.4425 | 0.7058 | 0.8401 |
193
+ | No log | 4.5079 | 284 | 0.6988 | 0.4201 | 0.6988 | 0.8360 |
194
+ | No log | 4.5397 | 286 | 0.7506 | 0.3943 | 0.7506 | 0.8664 |
195
+ | No log | 4.5714 | 288 | 0.8990 | 0.3628 | 0.8990 | 0.9482 |
196
+ | No log | 4.6032 | 290 | 0.8977 | 0.3761 | 0.8977 | 0.9475 |
197
+ | No log | 4.6349 | 292 | 0.7466 | 0.3496 | 0.7466 | 0.8641 |
198
+ | No log | 4.6667 | 294 | 0.7251 | 0.4297 | 0.7251 | 0.8515 |
199
+ | No log | 4.6984 | 296 | 0.7432 | 0.4143 | 0.7432 | 0.8621 |
200
+ | No log | 4.7302 | 298 | 0.6917 | 0.4593 | 0.6917 | 0.8317 |
201
+ | No log | 4.7619 | 300 | 0.7187 | 0.3942 | 0.7187 | 0.8477 |
202
+ | No log | 4.7937 | 302 | 0.9081 | 0.3797 | 0.9081 | 0.9530 |
203
+ | No log | 4.8254 | 304 | 0.9147 | 0.3876 | 0.9147 | 0.9564 |
204
+ | No log | 4.8571 | 306 | 0.7353 | 0.4329 | 0.7353 | 0.8575 |
205
+ | No log | 4.8889 | 308 | 0.6900 | 0.4625 | 0.6900 | 0.8306 |
206
+ | No log | 4.9206 | 310 | 0.7806 | 0.4528 | 0.7806 | 0.8835 |
207
+ | No log | 4.9524 | 312 | 0.7511 | 0.4651 | 0.7511 | 0.8666 |
208
+ | No log | 4.9841 | 314 | 0.6900 | 0.4703 | 0.6900 | 0.8307 |
209
+ | No log | 5.0159 | 316 | 0.6448 | 0.5051 | 0.6448 | 0.8030 |
210
+ | No log | 5.0476 | 318 | 0.7429 | 0.4589 | 0.7429 | 0.8619 |
211
+ | No log | 5.0794 | 320 | 0.9207 | 0.4307 | 0.9207 | 0.9595 |
212
+ | No log | 5.1111 | 322 | 0.8850 | 0.4209 | 0.8850 | 0.9407 |
213
+ | No log | 5.1429 | 324 | 0.7212 | 0.4714 | 0.7212 | 0.8492 |
214
+ | No log | 5.1746 | 326 | 0.6456 | 0.4650 | 0.6456 | 0.8035 |
215
+ | No log | 5.2063 | 328 | 0.6902 | 0.5162 | 0.6902 | 0.8308 |
216
+ | No log | 5.2381 | 330 | 0.6686 | 0.4582 | 0.6686 | 0.8177 |
217
+ | No log | 5.2698 | 332 | 0.6229 | 0.3456 | 0.6229 | 0.7892 |
218
+ | No log | 5.3016 | 334 | 0.6483 | 0.3310 | 0.6483 | 0.8052 |
219
+ | No log | 5.3333 | 336 | 0.7364 | 0.3822 | 0.7364 | 0.8581 |
220
+ | No log | 5.3651 | 338 | 0.7452 | 0.3977 | 0.7452 | 0.8633 |
221
+ | No log | 5.3968 | 340 | 0.6764 | 0.4152 | 0.6764 | 0.8225 |
222
+ | No log | 5.4286 | 342 | 0.6695 | 0.4104 | 0.6695 | 0.8182 |
223
+ | No log | 5.4603 | 344 | 0.6998 | 0.4603 | 0.6998 | 0.8365 |
224
+ | No log | 5.4921 | 346 | 0.7254 | 0.4840 | 0.7254 | 0.8517 |
225
+ | No log | 5.5238 | 348 | 0.7975 | 0.3978 | 0.7975 | 0.8930 |
226
+ | No log | 5.5556 | 350 | 1.0017 | 0.4235 | 1.0017 | 1.0009 |
227
+ | No log | 5.5873 | 352 | 0.9517 | 0.4174 | 0.9517 | 0.9755 |
228
+ | No log | 5.6190 | 354 | 0.8220 | 0.3854 | 0.8220 | 0.9067 |
229
+ | No log | 5.6508 | 356 | 0.7428 | 0.4111 | 0.7428 | 0.8618 |
230
+ | No log | 5.6825 | 358 | 0.7048 | 0.5193 | 0.7048 | 0.8396 |
231
+ | No log | 5.7143 | 360 | 0.7686 | 0.4296 | 0.7686 | 0.8767 |
232
+ | No log | 5.7460 | 362 | 0.7461 | 0.4348 | 0.7461 | 0.8638 |
233
+ | No log | 5.7778 | 364 | 0.6796 | 0.3505 | 0.6796 | 0.8244 |
234
+ | No log | 5.8095 | 366 | 0.6641 | 0.4583 | 0.6641 | 0.8149 |
235
+ | No log | 5.8413 | 368 | 0.7783 | 0.3964 | 0.7783 | 0.8822 |
236
+ | No log | 5.8730 | 370 | 0.8155 | 0.3828 | 0.8155 | 0.9030 |
237
+ | No log | 5.9048 | 372 | 0.7156 | 0.4961 | 0.7156 | 0.8459 |
238
+ | No log | 5.9365 | 374 | 0.6841 | 0.4549 | 0.6841 | 0.8271 |
239
+ | No log | 5.9683 | 376 | 0.7285 | 0.4466 | 0.7285 | 0.8535 |
240
+ | No log | 6.0 | 378 | 0.7280 | 0.5318 | 0.7280 | 0.8532 |
241
+ | No log | 6.0317 | 380 | 0.7640 | 0.4743 | 0.7640 | 0.8741 |
242
+ | No log | 6.0635 | 382 | 0.9156 | 0.3898 | 0.9156 | 0.9569 |
243
+ | No log | 6.0952 | 384 | 0.9746 | 0.3883 | 0.9746 | 0.9872 |
244
+ | No log | 6.1270 | 386 | 0.8185 | 0.4267 | 0.8185 | 0.9047 |
245
+ | No log | 6.1587 | 388 | 0.6631 | 0.3985 | 0.6631 | 0.8143 |
246
+ | No log | 6.1905 | 390 | 0.6711 | 0.4539 | 0.6711 | 0.8192 |
247
+ | No log | 6.2222 | 392 | 0.6495 | 0.4038 | 0.6495 | 0.8059 |
248
+ | No log | 6.2540 | 394 | 0.6589 | 0.4357 | 0.6589 | 0.8117 |
249
+ | No log | 6.2857 | 396 | 0.6898 | 0.4198 | 0.6898 | 0.8305 |
250
+ | No log | 6.3175 | 398 | 0.6933 | 0.4257 | 0.6933 | 0.8326 |
251
+ | No log | 6.3492 | 400 | 0.6969 | 0.4285 | 0.6969 | 0.8348 |
252
+ | No log | 6.3810 | 402 | 0.6821 | 0.4481 | 0.6821 | 0.8259 |
253
+ | No log | 6.4127 | 404 | 0.7897 | 0.4080 | 0.7897 | 0.8886 |
254
+ | No log | 6.4444 | 406 | 0.8443 | 0.4138 | 0.8443 | 0.9188 |
255
+ | No log | 6.4762 | 408 | 0.7324 | 0.4531 | 0.7324 | 0.8558 |
256
+ | No log | 6.5079 | 410 | 0.6474 | 0.4296 | 0.6474 | 0.8046 |
257
+ | No log | 6.5397 | 412 | 0.6369 | 0.4666 | 0.6369 | 0.7981 |
258
+ | No log | 6.5714 | 414 | 0.6731 | 0.4711 | 0.6731 | 0.8204 |
259
+ | No log | 6.6032 | 416 | 0.6760 | 0.4693 | 0.6760 | 0.8222 |
260
+ | No log | 6.6349 | 418 | 0.6324 | 0.4742 | 0.6324 | 0.7953 |
261
+ | No log | 6.6667 | 420 | 0.6169 | 0.4049 | 0.6169 | 0.7854 |
262
+ | No log | 6.6984 | 422 | 0.6636 | 0.4032 | 0.6636 | 0.8146 |
263
+ | No log | 6.7302 | 424 | 0.6790 | 0.3615 | 0.6790 | 0.8240 |
264
+ | No log | 6.7619 | 426 | 0.6525 | 0.3764 | 0.6525 | 0.8078 |
265
+ | No log | 6.7937 | 428 | 0.6404 | 0.4799 | 0.6404 | 0.8003 |
266
+ | No log | 6.8254 | 430 | 0.6305 | 0.4262 | 0.6305 | 0.7941 |
267
+ | No log | 6.8571 | 432 | 0.6465 | 0.4476 | 0.6465 | 0.8040 |
268
+ | No log | 6.8889 | 434 | 0.6543 | 0.4721 | 0.6543 | 0.8089 |
269
+ | No log | 6.9206 | 436 | 0.6854 | 0.4517 | 0.6854 | 0.8279 |
270
+ | No log | 6.9524 | 438 | 0.7681 | 0.4469 | 0.7681 | 0.8764 |
271
+ | No log | 6.9841 | 440 | 0.7654 | 0.4334 | 0.7654 | 0.8749 |
272
+ | No log | 7.0159 | 442 | 0.6939 | 0.4734 | 0.6939 | 0.8330 |
273
+ | No log | 7.0476 | 444 | 0.6613 | 0.6189 | 0.6613 | 0.8132 |
274
+ | No log | 7.0794 | 446 | 0.6609 | 0.5481 | 0.6609 | 0.8129 |
275
+ | No log | 7.1111 | 448 | 0.6274 | 0.5103 | 0.6274 | 0.7921 |
276
+ | No log | 7.1429 | 450 | 0.6202 | 0.4770 | 0.6202 | 0.7875 |
277
+ | No log | 7.1746 | 452 | 0.6173 | 0.4998 | 0.6173 | 0.7857 |
278
+ | No log | 7.2063 | 454 | 0.6335 | 0.5161 | 0.6335 | 0.7960 |
279
+ | No log | 7.2381 | 456 | 0.6657 | 0.5353 | 0.6657 | 0.8159 |
280
+ | No log | 7.2698 | 458 | 0.6977 | 0.4681 | 0.6977 | 0.8353 |
281
+ | No log | 7.3016 | 460 | 0.7087 | 0.4777 | 0.7087 | 0.8419 |
282
+ | No log | 7.3333 | 462 | 0.6742 | 0.5609 | 0.6742 | 0.8211 |
283
+ | No log | 7.3651 | 464 | 0.7652 | 0.4042 | 0.7652 | 0.8747 |
284
+ | No log | 7.3968 | 466 | 0.9109 | 0.4307 | 0.9109 | 0.9544 |
285
+ | No log | 7.4286 | 468 | 0.8905 | 0.4235 | 0.8905 | 0.9437 |
286
+ | No log | 7.4603 | 470 | 0.6986 | 0.3803 | 0.6986 | 0.8358 |
287
+ | No log | 7.4921 | 472 | 0.6264 | 0.4514 | 0.6264 | 0.7914 |
288
+ | No log | 7.5238 | 474 | 0.7257 | 0.4218 | 0.7257 | 0.8519 |
289
+ | No log | 7.5556 | 476 | 0.7820 | 0.3452 | 0.7820 | 0.8843 |
290
+ | No log | 7.5873 | 478 | 0.7264 | 0.4166 | 0.7264 | 0.8523 |
291
+ | No log | 7.6190 | 480 | 0.6675 | 0.4435 | 0.6675 | 0.8170 |
292
+ | No log | 7.6508 | 482 | 0.6706 | 0.3904 | 0.6706 | 0.8189 |
293
+ | No log | 7.6825 | 484 | 0.7181 | 0.4608 | 0.7181 | 0.8474 |
294
+ | No log | 7.7143 | 486 | 0.7387 | 0.4539 | 0.7387 | 0.8595 |
295
+ | No log | 7.7460 | 488 | 0.6951 | 0.4284 | 0.6951 | 0.8337 |
296
+ | No log | 7.7778 | 490 | 0.7037 | 0.4408 | 0.7037 | 0.8389 |
297
+ | No log | 7.8095 | 492 | 0.6978 | 0.4506 | 0.6978 | 0.8353 |
298
+ | No log | 7.8413 | 494 | 0.6904 | 0.4809 | 0.6904 | 0.8309 |
299
+ | No log | 7.8730 | 496 | 0.6728 | 0.4846 | 0.6728 | 0.8202 |
300
+ | No log | 7.9048 | 498 | 0.6560 | 0.4642 | 0.6560 | 0.8099 |
301
+ | 0.3683 | 7.9365 | 500 | 0.6380 | 0.4690 | 0.6380 | 0.7988 |
302
+ | 0.3683 | 7.9683 | 502 | 0.6305 | 0.4690 | 0.6305 | 0.7940 |
303
+ | 0.3683 | 8.0 | 504 | 0.6386 | 0.5175 | 0.6386 | 0.7991 |
304
+ | 0.3683 | 8.0317 | 506 | 0.6675 | 0.4887 | 0.6675 | 0.8170 |
305
+ | 0.3683 | 8.0635 | 508 | 0.6431 | 0.5688 | 0.6431 | 0.8019 |
306
+ | 0.3683 | 8.0952 | 510 | 0.6678 | 0.4229 | 0.6678 | 0.8172 |
307
+ | 0.3683 | 8.1270 | 512 | 0.7706 | 0.3691 | 0.7706 | 0.8778 |
308
+ | 0.3683 | 8.1587 | 514 | 0.8158 | 0.3735 | 0.8158 | 0.9032 |
309
+ | 0.3683 | 8.1905 | 516 | 0.7496 | 0.3961 | 0.7496 | 0.8658 |
310
+ | 0.3683 | 8.2222 | 518 | 0.6468 | 0.4617 | 0.6468 | 0.8042 |
311
+
312
+
313
+ ### Framework versions
314
+
315
+ - Transformers 4.44.2
316
+ - Pytorch 2.4.0+cu118
317
+ - Datasets 2.21.0
318
+ - Tokenizers 0.19.1
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "aubmindlab/bert-base-arabertv02",
3
+ "architectures": [
4
+ "BertForSequenceClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 768,
11
+ "id2label": {
12
+ "0": "LABEL_0"
13
+ },
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "label2id": {
17
+ "LABEL_0": 0
18
+ },
19
+ "layer_norm_eps": 1e-12,
20
+ "max_position_embeddings": 512,
21
+ "model_type": "bert",
22
+ "num_attention_heads": 12,
23
+ "num_hidden_layers": 12,
24
+ "pad_token_id": 0,
25
+ "position_embedding_type": "absolute",
26
+ "problem_type": "regression",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.44.2",
29
+ "type_vocab_size": 2,
30
+ "use_cache": true,
31
+ "vocab_size": 64000
32
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:58dbf982cdce27998320a750e98d05edae56480d604abe75d19f62dc3e58ae72
3
+ size 540799996
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:38ccc189338b3d57980ec0bf4c4d6cdf669a51779d318b96343d599fa007196d
3
+ size 5304