MayBashendy commited on
Commit
07fa307
·
verified ·
1 Parent(s): eb60093

Training in progress, step 500

Browse files
Files changed (4) hide show
  1. README.md +318 -0
  2. config.json +32 -0
  3. model.safetensors +3 -0
  4. training_args.bin +3 -0
README.md ADDED
@@ -0,0 +1,318 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ base_model: aubmindlab/bert-base-arabertv02
4
+ tags:
5
+ - generated_from_trainer
6
+ model-index:
7
+ - name: ArabicNewSplits8_usingALLEssays_FineTuningAraBERT_run2_AugV5_k11_task2_organization
8
+ results: []
9
+ ---
10
+
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
+
14
+ # ArabicNewSplits8_usingALLEssays_FineTuningAraBERT_run2_AugV5_k11_task2_organization
15
+
16
+ This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset.
17
+ It achieves the following results on the evaluation set:
18
+ - Loss: 0.5166
19
+ - Qwk: 0.5299
20
+ - Mse: 0.5166
21
+ - Rmse: 0.7188
22
+
23
+ ## Model description
24
+
25
+ More information needed
26
+
27
+ ## Intended uses & limitations
28
+
29
+ More information needed
30
+
31
+ ## Training and evaluation data
32
+
33
+ More information needed
34
+
35
+ ## Training procedure
36
+
37
+ ### Training hyperparameters
38
+
39
+ The following hyperparameters were used during training:
40
+ - learning_rate: 2e-05
41
+ - train_batch_size: 8
42
+ - eval_batch_size: 8
43
+ - seed: 42
44
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
45
+ - lr_scheduler_type: linear
46
+ - num_epochs: 100
47
+
48
+ ### Training results
49
+
50
+ | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse |
51
+ |:-------------:|:------:|:----:|:---------------:|:-------:|:------:|:------:|
52
+ | No log | 0.0351 | 2 | 4.4549 | -0.0327 | 4.4549 | 2.1107 |
53
+ | No log | 0.0702 | 4 | 2.3982 | -0.0091 | 2.3982 | 1.5486 |
54
+ | No log | 0.1053 | 6 | 1.5556 | -0.0289 | 1.5556 | 1.2473 |
55
+ | No log | 0.1404 | 8 | 1.1684 | 0.0010 | 1.1684 | 1.0809 |
56
+ | No log | 0.1754 | 10 | 0.9518 | 0.0672 | 0.9518 | 0.9756 |
57
+ | No log | 0.2105 | 12 | 0.8118 | 0.2308 | 0.8118 | 0.9010 |
58
+ | No log | 0.2456 | 14 | 0.7682 | 0.3122 | 0.7682 | 0.8764 |
59
+ | No log | 0.2807 | 16 | 0.8405 | 0.1437 | 0.8405 | 0.9168 |
60
+ | No log | 0.3158 | 18 | 1.3727 | 0.0461 | 1.3727 | 1.1716 |
61
+ | No log | 0.3509 | 20 | 1.1706 | 0.0538 | 1.1706 | 1.0819 |
62
+ | No log | 0.3860 | 22 | 0.9043 | 0.2085 | 0.9043 | 0.9509 |
63
+ | No log | 0.4211 | 24 | 1.0386 | 0.0632 | 1.0386 | 1.0191 |
64
+ | No log | 0.4561 | 26 | 0.9969 | 0.1509 | 0.9969 | 0.9984 |
65
+ | No log | 0.4912 | 28 | 0.8671 | 0.1888 | 0.8671 | 0.9312 |
66
+ | No log | 0.5263 | 30 | 0.8462 | 0.2339 | 0.8462 | 0.9199 |
67
+ | No log | 0.5614 | 32 | 0.7171 | 0.3407 | 0.7171 | 0.8468 |
68
+ | No log | 0.5965 | 34 | 0.6873 | 0.3424 | 0.6873 | 0.8290 |
69
+ | No log | 0.6316 | 36 | 0.7038 | 0.3304 | 0.7038 | 0.8389 |
70
+ | No log | 0.6667 | 38 | 0.7994 | 0.2551 | 0.7994 | 0.8941 |
71
+ | No log | 0.7018 | 40 | 0.7435 | 0.3247 | 0.7435 | 0.8622 |
72
+ | No log | 0.7368 | 42 | 0.6997 | 0.3272 | 0.6997 | 0.8365 |
73
+ | No log | 0.7719 | 44 | 0.7183 | 0.3535 | 0.7183 | 0.8475 |
74
+ | No log | 0.8070 | 46 | 0.6750 | 0.3362 | 0.6750 | 0.8216 |
75
+ | No log | 0.8421 | 48 | 0.6731 | 0.3519 | 0.6731 | 0.8204 |
76
+ | No log | 0.8772 | 50 | 0.7335 | 0.3373 | 0.7335 | 0.8564 |
77
+ | No log | 0.9123 | 52 | 0.9689 | 0.1842 | 0.9689 | 0.9843 |
78
+ | No log | 0.9474 | 54 | 1.2964 | 0.2597 | 1.2964 | 1.1386 |
79
+ | No log | 0.9825 | 56 | 1.1620 | 0.2479 | 1.1620 | 1.0780 |
80
+ | No log | 1.0175 | 58 | 0.8838 | 0.3191 | 0.8838 | 0.9401 |
81
+ | No log | 1.0526 | 60 | 0.7594 | 0.3322 | 0.7594 | 0.8714 |
82
+ | No log | 1.0877 | 62 | 0.7029 | 0.3652 | 0.7029 | 0.8384 |
83
+ | No log | 1.1228 | 64 | 0.7401 | 0.3874 | 0.7401 | 0.8603 |
84
+ | No log | 1.1579 | 66 | 0.9522 | 0.3069 | 0.9522 | 0.9758 |
85
+ | No log | 1.1930 | 68 | 1.1377 | 0.2803 | 1.1377 | 1.0666 |
86
+ | No log | 1.2281 | 70 | 1.0244 | 0.2762 | 1.0244 | 1.0121 |
87
+ | No log | 1.2632 | 72 | 0.6931 | 0.3529 | 0.6931 | 0.8325 |
88
+ | No log | 1.2982 | 74 | 0.6048 | 0.4625 | 0.6048 | 0.7777 |
89
+ | No log | 1.3333 | 76 | 0.6388 | 0.4115 | 0.6388 | 0.7992 |
90
+ | No log | 1.3684 | 78 | 0.5982 | 0.4833 | 0.5982 | 0.7734 |
91
+ | No log | 1.4035 | 80 | 0.6361 | 0.3941 | 0.6361 | 0.7975 |
92
+ | No log | 1.4386 | 82 | 0.7411 | 0.3487 | 0.7411 | 0.8609 |
93
+ | No log | 1.4737 | 84 | 0.7613 | 0.3722 | 0.7613 | 0.8725 |
94
+ | No log | 1.5088 | 86 | 0.7625 | 0.3722 | 0.7625 | 0.8732 |
95
+ | No log | 1.5439 | 88 | 0.6572 | 0.3798 | 0.6572 | 0.8107 |
96
+ | No log | 1.5789 | 90 | 0.5902 | 0.4549 | 0.5902 | 0.7682 |
97
+ | No log | 1.6140 | 92 | 0.5865 | 0.4796 | 0.5865 | 0.7658 |
98
+ | No log | 1.6491 | 94 | 0.6313 | 0.4166 | 0.6313 | 0.7946 |
99
+ | No log | 1.6842 | 96 | 0.6409 | 0.4220 | 0.6409 | 0.8006 |
100
+ | No log | 1.7193 | 98 | 0.5950 | 0.4839 | 0.5950 | 0.7713 |
101
+ | No log | 1.7544 | 100 | 0.5801 | 0.5468 | 0.5801 | 0.7616 |
102
+ | No log | 1.7895 | 102 | 0.5896 | 0.5789 | 0.5896 | 0.7678 |
103
+ | No log | 1.8246 | 104 | 0.6056 | 0.5860 | 0.6056 | 0.7782 |
104
+ | No log | 1.8596 | 106 | 0.6970 | 0.5602 | 0.6970 | 0.8349 |
105
+ | No log | 1.8947 | 108 | 0.7064 | 0.5535 | 0.7064 | 0.8405 |
106
+ | No log | 1.9298 | 110 | 0.5695 | 0.5735 | 0.5695 | 0.7547 |
107
+ | No log | 1.9649 | 112 | 0.5579 | 0.6070 | 0.5579 | 0.7470 |
108
+ | No log | 2.0 | 114 | 0.5267 | 0.5700 | 0.5267 | 0.7257 |
109
+ | No log | 2.0351 | 116 | 0.5301 | 0.5312 | 0.5301 | 0.7281 |
110
+ | No log | 2.0702 | 118 | 0.5255 | 0.4644 | 0.5255 | 0.7249 |
111
+ | No log | 2.1053 | 120 | 0.5628 | 0.5086 | 0.5628 | 0.7502 |
112
+ | No log | 2.1404 | 122 | 0.5411 | 0.4990 | 0.5411 | 0.7356 |
113
+ | No log | 2.1754 | 124 | 0.5398 | 0.4835 | 0.5398 | 0.7347 |
114
+ | No log | 2.2105 | 126 | 0.5631 | 0.5540 | 0.5631 | 0.7504 |
115
+ | No log | 2.2456 | 128 | 0.5820 | 0.5896 | 0.5820 | 0.7629 |
116
+ | No log | 2.2807 | 130 | 0.6387 | 0.5284 | 0.6387 | 0.7992 |
117
+ | No log | 2.3158 | 132 | 0.6135 | 0.5595 | 0.6135 | 0.7832 |
118
+ | No log | 2.3509 | 134 | 0.6376 | 0.5525 | 0.6376 | 0.7985 |
119
+ | No log | 2.3860 | 136 | 0.7248 | 0.5090 | 0.7248 | 0.8513 |
120
+ | No log | 2.4211 | 138 | 0.6617 | 0.5054 | 0.6617 | 0.8135 |
121
+ | No log | 2.4561 | 140 | 0.5816 | 0.5483 | 0.5816 | 0.7626 |
122
+ | No log | 2.4912 | 142 | 0.6348 | 0.5002 | 0.6348 | 0.7967 |
123
+ | No log | 2.5263 | 144 | 0.9056 | 0.4423 | 0.9056 | 0.9516 |
124
+ | No log | 2.5614 | 146 | 0.9395 | 0.4442 | 0.9395 | 0.9693 |
125
+ | No log | 2.5965 | 148 | 0.6388 | 0.5248 | 0.6388 | 0.7992 |
126
+ | No log | 2.6316 | 150 | 0.5151 | 0.5434 | 0.5151 | 0.7177 |
127
+ | No log | 2.6667 | 152 | 0.5756 | 0.5422 | 0.5756 | 0.7587 |
128
+ | No log | 2.7018 | 154 | 0.5418 | 0.5687 | 0.5418 | 0.7361 |
129
+ | No log | 2.7368 | 156 | 0.5272 | 0.5274 | 0.5272 | 0.7261 |
130
+ | No log | 2.7719 | 158 | 0.6258 | 0.4536 | 0.6258 | 0.7911 |
131
+ | No log | 2.8070 | 160 | 0.6668 | 0.4541 | 0.6668 | 0.8166 |
132
+ | No log | 2.8421 | 162 | 0.5882 | 0.4969 | 0.5882 | 0.7669 |
133
+ | No log | 2.8772 | 164 | 0.5953 | 0.5088 | 0.5953 | 0.7716 |
134
+ | No log | 2.9123 | 166 | 0.6243 | 0.5368 | 0.6243 | 0.7901 |
135
+ | No log | 2.9474 | 168 | 0.6184 | 0.5614 | 0.6184 | 0.7864 |
136
+ | No log | 2.9825 | 170 | 0.8080 | 0.4634 | 0.8080 | 0.8989 |
137
+ | No log | 3.0175 | 172 | 0.9737 | 0.4332 | 0.9737 | 0.9868 |
138
+ | No log | 3.0526 | 174 | 0.7610 | 0.4693 | 0.7610 | 0.8723 |
139
+ | No log | 3.0877 | 176 | 0.5799 | 0.5377 | 0.5799 | 0.7615 |
140
+ | No log | 3.1228 | 178 | 0.5510 | 0.5086 | 0.5510 | 0.7423 |
141
+ | No log | 3.1579 | 180 | 0.5446 | 0.5447 | 0.5446 | 0.7380 |
142
+ | No log | 3.1930 | 182 | 0.5406 | 0.5441 | 0.5406 | 0.7353 |
143
+ | No log | 3.2281 | 184 | 0.5236 | 0.5490 | 0.5236 | 0.7236 |
144
+ | No log | 3.2632 | 186 | 0.5909 | 0.4837 | 0.5909 | 0.7687 |
145
+ | No log | 3.2982 | 188 | 0.5838 | 0.5633 | 0.5838 | 0.7641 |
146
+ | No log | 3.3333 | 190 | 0.5591 | 0.5633 | 0.5591 | 0.7478 |
147
+ | No log | 3.3684 | 192 | 0.5740 | 0.5276 | 0.5740 | 0.7576 |
148
+ | No log | 3.4035 | 194 | 0.5681 | 0.5838 | 0.5681 | 0.7537 |
149
+ | No log | 3.4386 | 196 | 0.5899 | 0.5740 | 0.5899 | 0.7680 |
150
+ | No log | 3.4737 | 198 | 0.6211 | 0.5950 | 0.6211 | 0.7881 |
151
+ | No log | 3.5088 | 200 | 0.6506 | 0.5564 | 0.6506 | 0.8066 |
152
+ | No log | 3.5439 | 202 | 0.6324 | 0.5460 | 0.6324 | 0.7952 |
153
+ | No log | 3.5789 | 204 | 0.6231 | 0.5187 | 0.6231 | 0.7893 |
154
+ | No log | 3.6140 | 206 | 0.6157 | 0.5234 | 0.6157 | 0.7847 |
155
+ | No log | 3.6491 | 208 | 0.6378 | 0.4621 | 0.6378 | 0.7986 |
156
+ | No log | 3.6842 | 210 | 0.6541 | 0.4727 | 0.6541 | 0.8088 |
157
+ | No log | 3.7193 | 212 | 0.6112 | 0.4667 | 0.6112 | 0.7818 |
158
+ | No log | 3.7544 | 214 | 0.6189 | 0.5676 | 0.6189 | 0.7867 |
159
+ | No log | 3.7895 | 216 | 0.6465 | 0.4845 | 0.6465 | 0.8040 |
160
+ | No log | 3.8246 | 218 | 0.6226 | 0.5372 | 0.6226 | 0.7890 |
161
+ | No log | 3.8596 | 220 | 0.5936 | 0.5255 | 0.5936 | 0.7704 |
162
+ | No log | 3.8947 | 222 | 0.5849 | 0.5338 | 0.5849 | 0.7648 |
163
+ | No log | 3.9298 | 224 | 0.5765 | 0.5299 | 0.5765 | 0.7592 |
164
+ | No log | 3.9649 | 226 | 0.5891 | 0.5892 | 0.5891 | 0.7675 |
165
+ | No log | 4.0 | 228 | 0.7262 | 0.4894 | 0.7262 | 0.8522 |
166
+ | No log | 4.0351 | 230 | 0.7059 | 0.4879 | 0.7059 | 0.8402 |
167
+ | No log | 4.0702 | 232 | 0.6420 | 0.5520 | 0.6420 | 0.8012 |
168
+ | No log | 4.1053 | 234 | 0.5808 | 0.5024 | 0.5808 | 0.7621 |
169
+ | No log | 4.1404 | 236 | 0.5898 | 0.5011 | 0.5898 | 0.7680 |
170
+ | No log | 4.1754 | 238 | 0.6486 | 0.5297 | 0.6486 | 0.8054 |
171
+ | No log | 4.2105 | 240 | 0.6681 | 0.5358 | 0.6681 | 0.8174 |
172
+ | No log | 4.2456 | 242 | 0.6324 | 0.5386 | 0.6324 | 0.7952 |
173
+ | No log | 4.2807 | 244 | 0.6513 | 0.5427 | 0.6513 | 0.8071 |
174
+ | No log | 4.3158 | 246 | 0.6555 | 0.5171 | 0.6555 | 0.8096 |
175
+ | No log | 4.3509 | 248 | 0.6394 | 0.5238 | 0.6394 | 0.7996 |
176
+ | No log | 4.3860 | 250 | 0.6329 | 0.5773 | 0.6329 | 0.7956 |
177
+ | No log | 4.4211 | 252 | 0.6119 | 0.5832 | 0.6119 | 0.7822 |
178
+ | No log | 4.4561 | 254 | 0.6222 | 0.5727 | 0.6222 | 0.7888 |
179
+ | No log | 4.4912 | 256 | 0.5933 | 0.6159 | 0.5933 | 0.7703 |
180
+ | No log | 4.5263 | 258 | 0.5886 | 0.6373 | 0.5886 | 0.7672 |
181
+ | No log | 4.5614 | 260 | 0.5809 | 0.5885 | 0.5809 | 0.7622 |
182
+ | No log | 4.5965 | 262 | 0.6174 | 0.5949 | 0.6174 | 0.7858 |
183
+ | No log | 4.6316 | 264 | 0.6006 | 0.5922 | 0.6006 | 0.7750 |
184
+ | No log | 4.6667 | 266 | 0.5942 | 0.5556 | 0.5942 | 0.7709 |
185
+ | No log | 4.7018 | 268 | 0.6108 | 0.5338 | 0.6108 | 0.7815 |
186
+ | No log | 4.7368 | 270 | 0.5828 | 0.5189 | 0.5828 | 0.7634 |
187
+ | No log | 4.7719 | 272 | 0.5744 | 0.4915 | 0.5744 | 0.7579 |
188
+ | No log | 4.8070 | 274 | 0.5982 | 0.5427 | 0.5982 | 0.7734 |
189
+ | No log | 4.8421 | 276 | 0.5803 | 0.5811 | 0.5803 | 0.7618 |
190
+ | No log | 4.8772 | 278 | 0.5718 | 0.6336 | 0.5718 | 0.7561 |
191
+ | No log | 4.9123 | 280 | 0.6287 | 0.5584 | 0.6287 | 0.7929 |
192
+ | No log | 4.9474 | 282 | 0.6336 | 0.5352 | 0.6336 | 0.7960 |
193
+ | No log | 4.9825 | 284 | 0.5510 | 0.5451 | 0.5510 | 0.7423 |
194
+ | No log | 5.0175 | 286 | 0.6676 | 0.5715 | 0.6676 | 0.8171 |
195
+ | No log | 5.0526 | 288 | 0.6725 | 0.5715 | 0.6725 | 0.8200 |
196
+ | No log | 5.0877 | 290 | 0.6625 | 0.5697 | 0.6625 | 0.8140 |
197
+ | No log | 5.1228 | 292 | 0.5610 | 0.5181 | 0.5610 | 0.7490 |
198
+ | No log | 5.1579 | 294 | 0.5990 | 0.5195 | 0.5990 | 0.7739 |
199
+ | No log | 5.1930 | 296 | 0.5928 | 0.5195 | 0.5928 | 0.7699 |
200
+ | No log | 5.2281 | 298 | 0.5520 | 0.5012 | 0.5520 | 0.7429 |
201
+ | No log | 5.2632 | 300 | 0.5801 | 0.5153 | 0.5801 | 0.7616 |
202
+ | No log | 5.2982 | 302 | 0.5576 | 0.4611 | 0.5576 | 0.7467 |
203
+ | No log | 5.3333 | 304 | 0.5817 | 0.4931 | 0.5817 | 0.7627 |
204
+ | No log | 5.3684 | 306 | 0.6310 | 0.4963 | 0.6310 | 0.7943 |
205
+ | No log | 5.4035 | 308 | 0.5812 | 0.4882 | 0.5812 | 0.7624 |
206
+ | No log | 5.4386 | 310 | 0.5603 | 0.4614 | 0.5603 | 0.7485 |
207
+ | No log | 5.4737 | 312 | 0.5815 | 0.5422 | 0.5815 | 0.7625 |
208
+ | No log | 5.5088 | 314 | 0.5604 | 0.5200 | 0.5604 | 0.7486 |
209
+ | No log | 5.5439 | 316 | 0.5887 | 0.5179 | 0.5887 | 0.7673 |
210
+ | No log | 5.5789 | 318 | 0.5858 | 0.5472 | 0.5858 | 0.7654 |
211
+ | No log | 5.6140 | 320 | 0.5842 | 0.5116 | 0.5842 | 0.7643 |
212
+ | No log | 5.6491 | 322 | 0.6782 | 0.4919 | 0.6782 | 0.8235 |
213
+ | No log | 5.6842 | 324 | 0.7056 | 0.4562 | 0.7056 | 0.8400 |
214
+ | No log | 5.7193 | 326 | 0.6383 | 0.5062 | 0.6383 | 0.7990 |
215
+ | No log | 5.7544 | 328 | 0.5845 | 0.4425 | 0.5845 | 0.7645 |
216
+ | No log | 5.7895 | 330 | 0.5922 | 0.4759 | 0.5922 | 0.7696 |
217
+ | No log | 5.8246 | 332 | 0.5962 | 0.4943 | 0.5962 | 0.7721 |
218
+ | No log | 5.8596 | 334 | 0.5740 | 0.4815 | 0.5740 | 0.7576 |
219
+ | No log | 5.8947 | 336 | 0.5718 | 0.5075 | 0.5718 | 0.7562 |
220
+ | No log | 5.9298 | 338 | 0.5676 | 0.5155 | 0.5676 | 0.7534 |
221
+ | No log | 5.9649 | 340 | 0.5395 | 0.5079 | 0.5395 | 0.7345 |
222
+ | No log | 6.0 | 342 | 0.5810 | 0.5329 | 0.5810 | 0.7622 |
223
+ | No log | 6.0351 | 344 | 0.6298 | 0.5430 | 0.6298 | 0.7936 |
224
+ | No log | 6.0702 | 346 | 0.5720 | 0.5419 | 0.5720 | 0.7563 |
225
+ | No log | 6.1053 | 348 | 0.5485 | 0.6074 | 0.5485 | 0.7406 |
226
+ | No log | 6.1404 | 350 | 0.5457 | 0.5606 | 0.5457 | 0.7387 |
227
+ | No log | 6.1754 | 352 | 0.5664 | 0.5787 | 0.5664 | 0.7526 |
228
+ | No log | 6.2105 | 354 | 0.5821 | 0.5735 | 0.5821 | 0.7629 |
229
+ | No log | 6.2456 | 356 | 0.5702 | 0.5911 | 0.5702 | 0.7551 |
230
+ | No log | 6.2807 | 358 | 0.5689 | 0.5913 | 0.5689 | 0.7543 |
231
+ | No log | 6.3158 | 360 | 0.5656 | 0.5589 | 0.5656 | 0.7521 |
232
+ | No log | 6.3509 | 362 | 0.5548 | 0.5457 | 0.5548 | 0.7448 |
233
+ | No log | 6.3860 | 364 | 0.5502 | 0.5122 | 0.5502 | 0.7417 |
234
+ | No log | 6.4211 | 366 | 0.5531 | 0.5502 | 0.5531 | 0.7437 |
235
+ | No log | 6.4561 | 368 | 0.5866 | 0.5348 | 0.5866 | 0.7659 |
236
+ | No log | 6.4912 | 370 | 0.6023 | 0.5305 | 0.6023 | 0.7761 |
237
+ | No log | 6.5263 | 372 | 0.5682 | 0.5565 | 0.5682 | 0.7538 |
238
+ | No log | 6.5614 | 374 | 0.6178 | 0.5230 | 0.6178 | 0.7860 |
239
+ | No log | 6.5965 | 376 | 0.6211 | 0.5109 | 0.6211 | 0.7881 |
240
+ | No log | 6.6316 | 378 | 0.6002 | 0.5264 | 0.6002 | 0.7747 |
241
+ | No log | 6.6667 | 380 | 0.5513 | 0.5823 | 0.5513 | 0.7425 |
242
+ | No log | 6.7018 | 382 | 0.5825 | 0.5936 | 0.5825 | 0.7632 |
243
+ | No log | 6.7368 | 384 | 0.6321 | 0.5054 | 0.6321 | 0.7950 |
244
+ | No log | 6.7719 | 386 | 0.5869 | 0.5056 | 0.5869 | 0.7661 |
245
+ | No log | 6.8070 | 388 | 0.5587 | 0.5271 | 0.5587 | 0.7475 |
246
+ | No log | 6.8421 | 390 | 0.5695 | 0.5396 | 0.5695 | 0.7547 |
247
+ | No log | 6.8772 | 392 | 0.5810 | 0.5206 | 0.5810 | 0.7623 |
248
+ | No log | 6.9123 | 394 | 0.6514 | 0.5292 | 0.6514 | 0.8071 |
249
+ | No log | 6.9474 | 396 | 0.6784 | 0.4986 | 0.6784 | 0.8237 |
250
+ | No log | 6.9825 | 398 | 0.6152 | 0.5378 | 0.6152 | 0.7844 |
251
+ | No log | 7.0175 | 400 | 0.5781 | 0.4576 | 0.5781 | 0.7603 |
252
+ | No log | 7.0526 | 402 | 0.5767 | 0.4670 | 0.5767 | 0.7594 |
253
+ | No log | 7.0877 | 404 | 0.5788 | 0.4928 | 0.5788 | 0.7608 |
254
+ | No log | 7.1228 | 406 | 0.5839 | 0.5161 | 0.5839 | 0.7641 |
255
+ | No log | 7.1579 | 408 | 0.6564 | 0.5503 | 0.6564 | 0.8102 |
256
+ | No log | 7.1930 | 410 | 0.7350 | 0.5475 | 0.7350 | 0.8573 |
257
+ | No log | 7.2281 | 412 | 0.7243 | 0.5471 | 0.7243 | 0.8511 |
258
+ | No log | 7.2632 | 414 | 0.6127 | 0.5632 | 0.6127 | 0.7828 |
259
+ | No log | 7.2982 | 416 | 0.5998 | 0.5730 | 0.5998 | 0.7744 |
260
+ | No log | 7.3333 | 418 | 0.6460 | 0.5699 | 0.6460 | 0.8038 |
261
+ | No log | 7.3684 | 420 | 0.6053 | 0.5621 | 0.6053 | 0.7780 |
262
+ | No log | 7.4035 | 422 | 0.5466 | 0.5004 | 0.5466 | 0.7393 |
263
+ | No log | 7.4386 | 424 | 0.5551 | 0.5081 | 0.5551 | 0.7450 |
264
+ | No log | 7.4737 | 426 | 0.6155 | 0.4951 | 0.6155 | 0.7845 |
265
+ | No log | 7.5088 | 428 | 0.6202 | 0.4717 | 0.6202 | 0.7875 |
266
+ | No log | 7.5439 | 430 | 0.5581 | 0.5164 | 0.5581 | 0.7471 |
267
+ | No log | 7.5789 | 432 | 0.5332 | 0.4781 | 0.5332 | 0.7302 |
268
+ | No log | 7.6140 | 434 | 0.5478 | 0.5283 | 0.5478 | 0.7401 |
269
+ | No log | 7.6491 | 436 | 0.5423 | 0.5203 | 0.5423 | 0.7364 |
270
+ | No log | 7.6842 | 438 | 0.5479 | 0.5741 | 0.5479 | 0.7402 |
271
+ | No log | 7.7193 | 440 | 0.5594 | 0.5875 | 0.5594 | 0.7479 |
272
+ | No log | 7.7544 | 442 | 0.5851 | 0.5582 | 0.5851 | 0.7649 |
273
+ | No log | 7.7895 | 444 | 0.5834 | 0.5102 | 0.5834 | 0.7638 |
274
+ | No log | 7.8246 | 446 | 0.5622 | 0.5213 | 0.5622 | 0.7498 |
275
+ | No log | 7.8596 | 448 | 0.5566 | 0.5182 | 0.5566 | 0.7461 |
276
+ | No log | 7.8947 | 450 | 0.5486 | 0.5701 | 0.5486 | 0.7407 |
277
+ | No log | 7.9298 | 452 | 0.5564 | 0.5628 | 0.5564 | 0.7459 |
278
+ | No log | 7.9649 | 454 | 0.5485 | 0.5746 | 0.5485 | 0.7406 |
279
+ | No log | 8.0 | 456 | 0.5345 | 0.5783 | 0.5345 | 0.7311 |
280
+ | No log | 8.0351 | 458 | 0.5310 | 0.5804 | 0.5310 | 0.7287 |
281
+ | No log | 8.0702 | 460 | 0.5244 | 0.5707 | 0.5244 | 0.7242 |
282
+ | No log | 8.1053 | 462 | 0.5215 | 0.5707 | 0.5215 | 0.7222 |
283
+ | No log | 8.1404 | 464 | 0.5275 | 0.5831 | 0.5275 | 0.7263 |
284
+ | No log | 8.1754 | 466 | 0.5489 | 0.6030 | 0.5489 | 0.7409 |
285
+ | No log | 8.2105 | 468 | 0.5202 | 0.5670 | 0.5202 | 0.7213 |
286
+ | No log | 8.2456 | 470 | 0.5099 | 0.5778 | 0.5099 | 0.7141 |
287
+ | No log | 8.2807 | 472 | 0.5167 | 0.6293 | 0.5167 | 0.7188 |
288
+ | No log | 8.3158 | 474 | 0.5222 | 0.6033 | 0.5222 | 0.7227 |
289
+ | No log | 8.3509 | 476 | 0.5221 | 0.6192 | 0.5221 | 0.7225 |
290
+ | No log | 8.3860 | 478 | 0.5299 | 0.6302 | 0.5299 | 0.7280 |
291
+ | No log | 8.4211 | 480 | 0.5394 | 0.6404 | 0.5394 | 0.7344 |
292
+ | No log | 8.4561 | 482 | 0.5773 | 0.6337 | 0.5773 | 0.7598 |
293
+ | No log | 8.4912 | 484 | 0.5997 | 0.6227 | 0.5997 | 0.7744 |
294
+ | No log | 8.5263 | 486 | 0.5795 | 0.6071 | 0.5795 | 0.7612 |
295
+ | No log | 8.5614 | 488 | 0.5406 | 0.6153 | 0.5406 | 0.7353 |
296
+ | No log | 8.5965 | 490 | 0.5328 | 0.5553 | 0.5328 | 0.7299 |
297
+ | No log | 8.6316 | 492 | 0.5361 | 0.5472 | 0.5361 | 0.7322 |
298
+ | No log | 8.6667 | 494 | 0.5579 | 0.5260 | 0.5579 | 0.7469 |
299
+ | No log | 8.7018 | 496 | 0.6312 | 0.5619 | 0.6312 | 0.7945 |
300
+ | No log | 8.7368 | 498 | 0.6532 | 0.5457 | 0.6532 | 0.8082 |
301
+ | 0.4026 | 8.7719 | 500 | 0.6204 | 0.5504 | 0.6204 | 0.7876 |
302
+ | 0.4026 | 8.8070 | 502 | 0.5891 | 0.5250 | 0.5891 | 0.7675 |
303
+ | 0.4026 | 8.8421 | 504 | 0.5807 | 0.5415 | 0.5807 | 0.7621 |
304
+ | 0.4026 | 8.8772 | 506 | 0.5954 | 0.5787 | 0.5954 | 0.7716 |
305
+ | 0.4026 | 8.9123 | 508 | 0.5744 | 0.5824 | 0.5744 | 0.7579 |
306
+ | 0.4026 | 8.9474 | 510 | 0.5502 | 0.4792 | 0.5502 | 0.7418 |
307
+ | 0.4026 | 8.9825 | 512 | 0.5467 | 0.4506 | 0.5467 | 0.7394 |
308
+ | 0.4026 | 9.0175 | 514 | 0.5550 | 0.4015 | 0.5550 | 0.7450 |
309
+ | 0.4026 | 9.0526 | 516 | 0.5328 | 0.4383 | 0.5328 | 0.7299 |
310
+ | 0.4026 | 9.0877 | 518 | 0.5166 | 0.5299 | 0.5166 | 0.7188 |
311
+
312
+
313
+ ### Framework versions
314
+
315
+ - Transformers 4.44.2
316
+ - Pytorch 2.4.0+cu118
317
+ - Datasets 2.21.0
318
+ - Tokenizers 0.19.1
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "aubmindlab/bert-base-arabertv02",
3
+ "architectures": [
4
+ "BertForSequenceClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 768,
11
+ "id2label": {
12
+ "0": "LABEL_0"
13
+ },
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "label2id": {
17
+ "LABEL_0": 0
18
+ },
19
+ "layer_norm_eps": 1e-12,
20
+ "max_position_embeddings": 512,
21
+ "model_type": "bert",
22
+ "num_attention_heads": 12,
23
+ "num_hidden_layers": 12,
24
+ "pad_token_id": 0,
25
+ "position_embedding_type": "absolute",
26
+ "problem_type": "regression",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.44.2",
29
+ "type_vocab_size": 2,
30
+ "use_cache": true,
31
+ "vocab_size": 64000
32
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ee3a8d0150def958a2e5beb216e593c7a26c3a1efdae92efcf97c371a87e85aa
3
+ size 540799996
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5b94fbad3f90ae0c2c57acf5c62c92f20c73e9af288e77fe83def504974d3278
3
+ size 5304