MayBashendy commited on
Commit
0c1a301
·
verified ·
1 Parent(s): 4e5d18b

Training in progress, step 500

Browse files
Files changed (4) hide show
  1. README.md +374 -0
  2. config.json +32 -0
  3. model.safetensors +3 -0
  4. training_args.bin +3 -0
README.md ADDED
@@ -0,0 +1,374 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ base_model: aubmindlab/bert-base-arabertv02
4
+ tags:
5
+ - generated_from_trainer
6
+ model-index:
7
+ - name: ArabicNewSplits8_usingALLEssays_FineTuningAraBERT_run1_AugV5_k17_task2_organization
8
+ results: []
9
+ ---
10
+
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
+
14
+ # ArabicNewSplits8_usingALLEssays_FineTuningAraBERT_run1_AugV5_k17_task2_organization
15
+
16
+ This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset.
17
+ It achieves the following results on the evaluation set:
18
+ - Loss: 0.6216
19
+ - Qwk: 0.4473
20
+ - Mse: 0.6216
21
+ - Rmse: 0.7884
22
+
23
+ ## Model description
24
+
25
+ More information needed
26
+
27
+ ## Intended uses & limitations
28
+
29
+ More information needed
30
+
31
+ ## Training and evaluation data
32
+
33
+ More information needed
34
+
35
+ ## Training procedure
36
+
37
+ ### Training hyperparameters
38
+
39
+ The following hyperparameters were used during training:
40
+ - learning_rate: 2e-05
41
+ - train_batch_size: 8
42
+ - eval_batch_size: 8
43
+ - seed: 42
44
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
45
+ - lr_scheduler_type: linear
46
+ - num_epochs: 100
47
+
48
+ ### Training results
49
+
50
+ | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse |
51
+ |:-------------:|:------:|:----:|:---------------:|:-------:|:------:|:------:|
52
+ | No log | 0.0227 | 2 | 4.1099 | -0.0156 | 4.1099 | 2.0273 |
53
+ | No log | 0.0455 | 4 | 2.2908 | 0.0624 | 2.2908 | 1.5135 |
54
+ | No log | 0.0682 | 6 | 1.2693 | 0.0258 | 1.2693 | 1.1266 |
55
+ | No log | 0.0909 | 8 | 1.0996 | -0.0865 | 1.0996 | 1.0486 |
56
+ | No log | 0.1136 | 10 | 0.8345 | 0.2010 | 0.8345 | 0.9135 |
57
+ | No log | 0.1364 | 12 | 0.8154 | 0.1624 | 0.8154 | 0.9030 |
58
+ | No log | 0.1591 | 14 | 0.8399 | 0.1744 | 0.8399 | 0.9164 |
59
+ | No log | 0.1818 | 16 | 0.8794 | 0.1994 | 0.8794 | 0.9378 |
60
+ | No log | 0.2045 | 18 | 1.0899 | 0.0906 | 1.0899 | 1.0440 |
61
+ | No log | 0.2273 | 20 | 1.3842 | -0.0568 | 1.3842 | 1.1765 |
62
+ | No log | 0.25 | 22 | 1.3723 | 0.0152 | 1.3723 | 1.1715 |
63
+ | No log | 0.2727 | 24 | 1.5472 | 0.0756 | 1.5472 | 1.2439 |
64
+ | No log | 0.2955 | 26 | 1.5717 | 0.0323 | 1.5717 | 1.2537 |
65
+ | No log | 0.3182 | 28 | 1.3298 | -0.0290 | 1.3298 | 1.1532 |
66
+ | No log | 0.3409 | 30 | 1.0326 | 0.0574 | 1.0326 | 1.0162 |
67
+ | No log | 0.3636 | 32 | 0.9026 | 0.1496 | 0.9026 | 0.9500 |
68
+ | No log | 0.3864 | 34 | 0.8495 | 0.2239 | 0.8495 | 0.9217 |
69
+ | No log | 0.4091 | 36 | 0.9157 | 0.1867 | 0.9157 | 0.9569 |
70
+ | No log | 0.4318 | 38 | 0.9796 | 0.2049 | 0.9796 | 0.9897 |
71
+ | No log | 0.4545 | 40 | 1.1976 | 0.1888 | 1.1976 | 1.0943 |
72
+ | No log | 0.4773 | 42 | 1.1977 | 0.2031 | 1.1977 | 1.0944 |
73
+ | No log | 0.5 | 44 | 1.1920 | 0.1449 | 1.1920 | 1.0918 |
74
+ | No log | 0.5227 | 46 | 1.0787 | 0.1547 | 1.0787 | 1.0386 |
75
+ | No log | 0.5455 | 48 | 1.0565 | 0.0904 | 1.0565 | 1.0279 |
76
+ | No log | 0.5682 | 50 | 0.9601 | 0.1748 | 0.9601 | 0.9798 |
77
+ | No log | 0.5909 | 52 | 0.9102 | 0.2748 | 0.9102 | 0.9541 |
78
+ | No log | 0.6136 | 54 | 0.9617 | 0.2325 | 0.9617 | 0.9806 |
79
+ | No log | 0.6364 | 56 | 1.1189 | 0.2104 | 1.1189 | 1.0578 |
80
+ | No log | 0.6591 | 58 | 1.1292 | 0.1752 | 1.1292 | 1.0627 |
81
+ | No log | 0.6818 | 60 | 1.1897 | 0.0957 | 1.1897 | 1.0907 |
82
+ | No log | 0.7045 | 62 | 1.2487 | 0.1669 | 1.2487 | 1.1174 |
83
+ | No log | 0.7273 | 64 | 1.0565 | 0.1367 | 1.0565 | 1.0279 |
84
+ | No log | 0.75 | 66 | 0.9177 | 0.2267 | 0.9177 | 0.9579 |
85
+ | No log | 0.7727 | 68 | 0.9339 | 0.2267 | 0.9339 | 0.9664 |
86
+ | No log | 0.7955 | 70 | 0.9933 | 0.2169 | 0.9933 | 0.9966 |
87
+ | No log | 0.8182 | 72 | 1.0842 | 0.1652 | 1.0842 | 1.0412 |
88
+ | No log | 0.8409 | 74 | 1.0223 | 0.1928 | 1.0223 | 1.0111 |
89
+ | No log | 0.8636 | 76 | 1.0365 | 0.1872 | 1.0365 | 1.0181 |
90
+ | No log | 0.8864 | 78 | 1.1340 | 0.1805 | 1.1340 | 1.0649 |
91
+ | No log | 0.9091 | 80 | 1.0687 | 0.1805 | 1.0687 | 1.0338 |
92
+ | No log | 0.9318 | 82 | 0.8867 | 0.2571 | 0.8867 | 0.9417 |
93
+ | No log | 0.9545 | 84 | 0.7166 | 0.3409 | 0.7166 | 0.8465 |
94
+ | No log | 0.9773 | 86 | 0.6814 | 0.4413 | 0.6814 | 0.8254 |
95
+ | No log | 1.0 | 88 | 0.6562 | 0.4523 | 0.6562 | 0.8101 |
96
+ | No log | 1.0227 | 90 | 0.6544 | 0.4402 | 0.6544 | 0.8090 |
97
+ | No log | 1.0455 | 92 | 0.6549 | 0.4298 | 0.6549 | 0.8092 |
98
+ | No log | 1.0682 | 94 | 0.6617 | 0.4465 | 0.6617 | 0.8134 |
99
+ | No log | 1.0909 | 96 | 0.7562 | 0.4125 | 0.7562 | 0.8696 |
100
+ | No log | 1.1136 | 98 | 0.8636 | 0.3595 | 0.8636 | 0.9293 |
101
+ | No log | 1.1364 | 100 | 0.8333 | 0.3570 | 0.8333 | 0.9129 |
102
+ | No log | 1.1591 | 102 | 0.7301 | 0.4488 | 0.7301 | 0.8545 |
103
+ | No log | 1.1818 | 104 | 0.6612 | 0.4588 | 0.6612 | 0.8131 |
104
+ | No log | 1.2045 | 106 | 0.6500 | 0.4618 | 0.6500 | 0.8062 |
105
+ | No log | 1.2273 | 108 | 0.6944 | 0.3940 | 0.6944 | 0.8333 |
106
+ | No log | 1.25 | 110 | 0.6808 | 0.4496 | 0.6808 | 0.8251 |
107
+ | No log | 1.2727 | 112 | 0.6634 | 0.4389 | 0.6634 | 0.8145 |
108
+ | No log | 1.2955 | 114 | 0.6472 | 0.4614 | 0.6472 | 0.8045 |
109
+ | No log | 1.3182 | 116 | 0.6588 | 0.4396 | 0.6588 | 0.8117 |
110
+ | No log | 1.3409 | 118 | 0.6621 | 0.4482 | 0.6621 | 0.8137 |
111
+ | No log | 1.3636 | 120 | 0.6750 | 0.4827 | 0.6750 | 0.8216 |
112
+ | No log | 1.3864 | 122 | 0.6975 | 0.4072 | 0.6975 | 0.8352 |
113
+ | No log | 1.4091 | 124 | 0.6982 | 0.4856 | 0.6982 | 0.8356 |
114
+ | No log | 1.4318 | 126 | 0.7534 | 0.4575 | 0.7534 | 0.8680 |
115
+ | No log | 1.4545 | 128 | 1.0781 | 0.3302 | 1.0781 | 1.0383 |
116
+ | No log | 1.4773 | 130 | 0.9862 | 0.3447 | 0.9862 | 0.9931 |
117
+ | No log | 1.5 | 132 | 0.6761 | 0.48 | 0.6761 | 0.8223 |
118
+ | No log | 1.5227 | 134 | 0.6454 | 0.4151 | 0.6454 | 0.8034 |
119
+ | No log | 1.5455 | 136 | 0.6692 | 0.4261 | 0.6692 | 0.8180 |
120
+ | No log | 1.5682 | 138 | 0.6318 | 0.3661 | 0.6318 | 0.7949 |
121
+ | No log | 1.5909 | 140 | 0.8353 | 0.3908 | 0.8353 | 0.9140 |
122
+ | No log | 1.6136 | 142 | 1.0756 | 0.2009 | 1.0756 | 1.0371 |
123
+ | No log | 1.6364 | 144 | 0.8907 | 0.3191 | 0.8907 | 0.9438 |
124
+ | No log | 1.6591 | 146 | 0.6391 | 0.4784 | 0.6391 | 0.7994 |
125
+ | No log | 1.6818 | 148 | 0.6220 | 0.4102 | 0.6220 | 0.7887 |
126
+ | No log | 1.7045 | 150 | 0.6233 | 0.4284 | 0.6233 | 0.7895 |
127
+ | No log | 1.7273 | 152 | 0.7015 | 0.5507 | 0.7015 | 0.8376 |
128
+ | No log | 1.75 | 154 | 0.8576 | 0.4136 | 0.8576 | 0.9260 |
129
+ | No log | 1.7727 | 156 | 0.7904 | 0.4821 | 0.7904 | 0.8891 |
130
+ | No log | 1.7955 | 158 | 0.7411 | 0.4902 | 0.7411 | 0.8609 |
131
+ | No log | 1.8182 | 160 | 0.6802 | 0.4532 | 0.6802 | 0.8248 |
132
+ | No log | 1.8409 | 162 | 0.6132 | 0.4506 | 0.6132 | 0.7831 |
133
+ | No log | 1.8636 | 164 | 0.6203 | 0.4372 | 0.6203 | 0.7876 |
134
+ | No log | 1.8864 | 166 | 0.6264 | 0.4635 | 0.6264 | 0.7914 |
135
+ | No log | 1.9091 | 168 | 0.7215 | 0.4097 | 0.7215 | 0.8494 |
136
+ | No log | 1.9318 | 170 | 0.7232 | 0.4210 | 0.7232 | 0.8504 |
137
+ | No log | 1.9545 | 172 | 0.6766 | 0.4873 | 0.6766 | 0.8226 |
138
+ | No log | 1.9773 | 174 | 0.7119 | 0.5016 | 0.7119 | 0.8437 |
139
+ | No log | 2.0 | 176 | 0.8294 | 0.4151 | 0.8294 | 0.9107 |
140
+ | No log | 2.0227 | 178 | 0.9000 | 0.4199 | 0.9000 | 0.9487 |
141
+ | No log | 2.0455 | 180 | 0.9700 | 0.3984 | 0.9700 | 0.9849 |
142
+ | No log | 2.0682 | 182 | 0.8547 | 0.3862 | 0.8547 | 0.9245 |
143
+ | No log | 2.0909 | 184 | 0.7254 | 0.4838 | 0.7254 | 0.8517 |
144
+ | No log | 2.1136 | 186 | 0.6819 | 0.4387 | 0.6819 | 0.8258 |
145
+ | No log | 2.1364 | 188 | 0.6777 | 0.4476 | 0.6777 | 0.8232 |
146
+ | No log | 2.1591 | 190 | 0.6811 | 0.4970 | 0.6811 | 0.8253 |
147
+ | No log | 2.1818 | 192 | 0.7233 | 0.4467 | 0.7233 | 0.8505 |
148
+ | No log | 2.2045 | 194 | 0.7651 | 0.4584 | 0.7651 | 0.8747 |
149
+ | No log | 2.2273 | 196 | 0.6909 | 0.4964 | 0.6909 | 0.8312 |
150
+ | No log | 2.25 | 198 | 0.6619 | 0.4456 | 0.6619 | 0.8136 |
151
+ | No log | 2.2727 | 200 | 0.6885 | 0.4337 | 0.6885 | 0.8298 |
152
+ | No log | 2.2955 | 202 | 0.6699 | 0.4403 | 0.6699 | 0.8185 |
153
+ | No log | 2.3182 | 204 | 0.7049 | 0.4729 | 0.7049 | 0.8396 |
154
+ | No log | 2.3409 | 206 | 0.8128 | 0.4883 | 0.8128 | 0.9015 |
155
+ | No log | 2.3636 | 208 | 0.8613 | 0.4552 | 0.8613 | 0.9281 |
156
+ | No log | 2.3864 | 210 | 0.7691 | 0.4709 | 0.7691 | 0.8770 |
157
+ | No log | 2.4091 | 212 | 0.6917 | 0.5145 | 0.6917 | 0.8317 |
158
+ | No log | 2.4318 | 214 | 0.6983 | 0.4881 | 0.6983 | 0.8356 |
159
+ | No log | 2.4545 | 216 | 0.7654 | 0.4848 | 0.7654 | 0.8748 |
160
+ | No log | 2.4773 | 218 | 0.7111 | 0.4758 | 0.7111 | 0.8432 |
161
+ | No log | 2.5 | 220 | 0.6531 | 0.5053 | 0.6531 | 0.8081 |
162
+ | No log | 2.5227 | 222 | 0.6413 | 0.4714 | 0.6413 | 0.8008 |
163
+ | No log | 2.5455 | 224 | 0.6437 | 0.4851 | 0.6437 | 0.8023 |
164
+ | No log | 2.5682 | 226 | 0.6444 | 0.4490 | 0.6444 | 0.8027 |
165
+ | No log | 2.5909 | 228 | 0.6822 | 0.4722 | 0.6822 | 0.8259 |
166
+ | No log | 2.6136 | 230 | 0.7484 | 0.4467 | 0.7484 | 0.8651 |
167
+ | No log | 2.6364 | 232 | 0.7224 | 0.4744 | 0.7224 | 0.8499 |
168
+ | No log | 2.6591 | 234 | 0.6703 | 0.4895 | 0.6703 | 0.8187 |
169
+ | No log | 2.6818 | 236 | 0.6716 | 0.4608 | 0.6716 | 0.8195 |
170
+ | No log | 2.7045 | 238 | 0.6863 | 0.4228 | 0.6863 | 0.8284 |
171
+ | No log | 2.7273 | 240 | 0.7090 | 0.4871 | 0.7090 | 0.8420 |
172
+ | No log | 2.75 | 242 | 0.7463 | 0.4566 | 0.7463 | 0.8639 |
173
+ | No log | 2.7727 | 244 | 0.7124 | 0.4092 | 0.7124 | 0.8441 |
174
+ | No log | 2.7955 | 246 | 0.7213 | 0.4640 | 0.7213 | 0.8493 |
175
+ | No log | 2.8182 | 248 | 0.7497 | 0.4701 | 0.7497 | 0.8659 |
176
+ | No log | 2.8409 | 250 | 0.6819 | 0.4488 | 0.6819 | 0.8258 |
177
+ | No log | 2.8636 | 252 | 0.6575 | 0.4915 | 0.6575 | 0.8108 |
178
+ | No log | 2.8864 | 254 | 0.6840 | 0.4256 | 0.6840 | 0.8271 |
179
+ | No log | 2.9091 | 256 | 0.6749 | 0.4404 | 0.6749 | 0.8215 |
180
+ | No log | 2.9318 | 258 | 0.6717 | 0.5094 | 0.6717 | 0.8196 |
181
+ | No log | 2.9545 | 260 | 0.6992 | 0.4584 | 0.6992 | 0.8362 |
182
+ | No log | 2.9773 | 262 | 0.6968 | 0.4672 | 0.6968 | 0.8347 |
183
+ | No log | 3.0 | 264 | 0.7322 | 0.4705 | 0.7322 | 0.8557 |
184
+ | No log | 3.0227 | 266 | 0.6922 | 0.5066 | 0.6922 | 0.8320 |
185
+ | No log | 3.0455 | 268 | 0.6578 | 0.4930 | 0.6578 | 0.8110 |
186
+ | No log | 3.0682 | 270 | 0.6723 | 0.4548 | 0.6723 | 0.8199 |
187
+ | No log | 3.0909 | 272 | 0.6949 | 0.4233 | 0.6949 | 0.8336 |
188
+ | No log | 3.1136 | 274 | 0.6477 | 0.4813 | 0.6477 | 0.8048 |
189
+ | No log | 3.1364 | 276 | 0.6615 | 0.5041 | 0.6615 | 0.8133 |
190
+ | No log | 3.1591 | 278 | 0.6933 | 0.5109 | 0.6933 | 0.8327 |
191
+ | No log | 3.1818 | 280 | 0.6746 | 0.4884 | 0.6746 | 0.8214 |
192
+ | No log | 3.2045 | 282 | 0.6926 | 0.5223 | 0.6926 | 0.8322 |
193
+ | No log | 3.2273 | 284 | 0.7483 | 0.5112 | 0.7483 | 0.8651 |
194
+ | No log | 3.25 | 286 | 0.7441 | 0.5009 | 0.7441 | 0.8626 |
195
+ | No log | 3.2727 | 288 | 0.6650 | 0.5017 | 0.6650 | 0.8155 |
196
+ | No log | 3.2955 | 290 | 0.6669 | 0.3999 | 0.6669 | 0.8166 |
197
+ | No log | 3.3182 | 292 | 0.6960 | 0.4484 | 0.6960 | 0.8343 |
198
+ | No log | 3.3409 | 294 | 0.8392 | 0.5019 | 0.8392 | 0.9161 |
199
+ | No log | 3.3636 | 296 | 0.8603 | 0.4950 | 0.8603 | 0.9275 |
200
+ | No log | 3.3864 | 298 | 0.7032 | 0.4862 | 0.7032 | 0.8386 |
201
+ | No log | 3.4091 | 300 | 0.6496 | 0.4490 | 0.6496 | 0.8060 |
202
+ | No log | 3.4318 | 302 | 0.6590 | 0.4762 | 0.6590 | 0.8118 |
203
+ | No log | 3.4545 | 304 | 0.7671 | 0.4546 | 0.7671 | 0.8759 |
204
+ | No log | 3.4773 | 306 | 0.7460 | 0.4673 | 0.7460 | 0.8637 |
205
+ | No log | 3.5 | 308 | 0.6498 | 0.4586 | 0.6498 | 0.8061 |
206
+ | No log | 3.5227 | 310 | 0.6290 | 0.4260 | 0.6290 | 0.7931 |
207
+ | No log | 3.5455 | 312 | 0.6519 | 0.4024 | 0.6519 | 0.8074 |
208
+ | No log | 3.5682 | 314 | 0.6548 | 0.4289 | 0.6548 | 0.8092 |
209
+ | No log | 3.5909 | 316 | 0.6627 | 0.4578 | 0.6627 | 0.8140 |
210
+ | No log | 3.6136 | 318 | 0.6822 | 0.4648 | 0.6822 | 0.8260 |
211
+ | No log | 3.6364 | 320 | 0.7080 | 0.4549 | 0.7080 | 0.8415 |
212
+ | No log | 3.6591 | 322 | 0.7123 | 0.4649 | 0.7123 | 0.8440 |
213
+ | No log | 3.6818 | 324 | 0.7332 | 0.4347 | 0.7332 | 0.8563 |
214
+ | No log | 3.7045 | 326 | 0.7917 | 0.4308 | 0.7917 | 0.8898 |
215
+ | No log | 3.7273 | 328 | 0.7630 | 0.4033 | 0.7630 | 0.8735 |
216
+ | No log | 3.75 | 330 | 0.7321 | 0.4 | 0.7321 | 0.8556 |
217
+ | No log | 3.7727 | 332 | 0.7887 | 0.4180 | 0.7887 | 0.8881 |
218
+ | No log | 3.7955 | 334 | 0.8181 | 0.3937 | 0.8181 | 0.9045 |
219
+ | No log | 3.8182 | 336 | 0.7745 | 0.4180 | 0.7745 | 0.8800 |
220
+ | No log | 3.8409 | 338 | 0.7049 | 0.4443 | 0.7049 | 0.8396 |
221
+ | No log | 3.8636 | 340 | 0.7031 | 0.4306 | 0.7031 | 0.8385 |
222
+ | No log | 3.8864 | 342 | 0.6960 | 0.4071 | 0.6960 | 0.8342 |
223
+ | No log | 3.9091 | 344 | 0.7023 | 0.3894 | 0.7023 | 0.8380 |
224
+ | No log | 3.9318 | 346 | 0.6835 | 0.4041 | 0.6835 | 0.8268 |
225
+ | No log | 3.9545 | 348 | 0.6914 | 0.3920 | 0.6914 | 0.8315 |
226
+ | No log | 3.9773 | 350 | 0.7011 | 0.3954 | 0.7011 | 0.8373 |
227
+ | No log | 4.0 | 352 | 0.7412 | 0.4004 | 0.7412 | 0.8609 |
228
+ | No log | 4.0227 | 354 | 0.7582 | 0.4296 | 0.7582 | 0.8707 |
229
+ | No log | 4.0455 | 356 | 0.6931 | 0.4304 | 0.6931 | 0.8325 |
230
+ | No log | 4.0682 | 358 | 0.6891 | 0.4472 | 0.6891 | 0.8301 |
231
+ | No log | 4.0909 | 360 | 0.7184 | 0.4385 | 0.7184 | 0.8476 |
232
+ | No log | 4.1136 | 362 | 0.6909 | 0.4094 | 0.6909 | 0.8312 |
233
+ | No log | 4.1364 | 364 | 0.6648 | 0.3852 | 0.6648 | 0.8153 |
234
+ | No log | 4.1591 | 366 | 0.6788 | 0.4066 | 0.6788 | 0.8239 |
235
+ | No log | 4.1818 | 368 | 0.7118 | 0.4253 | 0.7118 | 0.8437 |
236
+ | No log | 4.2045 | 370 | 0.8165 | 0.4142 | 0.8165 | 0.9036 |
237
+ | No log | 4.2273 | 372 | 0.7992 | 0.4410 | 0.7992 | 0.8940 |
238
+ | No log | 4.25 | 374 | 0.7454 | 0.4354 | 0.7454 | 0.8634 |
239
+ | No log | 4.2727 | 376 | 0.7081 | 0.4248 | 0.7081 | 0.8415 |
240
+ | No log | 4.2955 | 378 | 0.6704 | 0.4430 | 0.6704 | 0.8188 |
241
+ | No log | 4.3182 | 380 | 0.6615 | 0.4430 | 0.6615 | 0.8133 |
242
+ | No log | 4.3409 | 382 | 0.6623 | 0.4165 | 0.6623 | 0.8138 |
243
+ | No log | 4.3636 | 384 | 0.6580 | 0.4610 | 0.6580 | 0.8112 |
244
+ | No log | 4.3864 | 386 | 0.6574 | 0.4610 | 0.6574 | 0.8108 |
245
+ | No log | 4.4091 | 388 | 0.6630 | 0.4513 | 0.6630 | 0.8142 |
246
+ | No log | 4.4318 | 390 | 0.6745 | 0.3740 | 0.6745 | 0.8213 |
247
+ | No log | 4.4545 | 392 | 0.7388 | 0.4238 | 0.7388 | 0.8595 |
248
+ | No log | 4.4773 | 394 | 0.7531 | 0.4062 | 0.7531 | 0.8678 |
249
+ | No log | 4.5 | 396 | 0.7151 | 0.3776 | 0.7151 | 0.8456 |
250
+ | No log | 4.5227 | 398 | 0.7306 | 0.4633 | 0.7306 | 0.8547 |
251
+ | No log | 4.5455 | 400 | 0.7953 | 0.4595 | 0.7953 | 0.8918 |
252
+ | No log | 4.5682 | 402 | 0.7517 | 0.4500 | 0.7517 | 0.8670 |
253
+ | No log | 4.5909 | 404 | 0.6715 | 0.4652 | 0.6715 | 0.8195 |
254
+ | No log | 4.6136 | 406 | 0.6722 | 0.4144 | 0.6722 | 0.8199 |
255
+ | No log | 4.6364 | 408 | 0.6873 | 0.4175 | 0.6873 | 0.8290 |
256
+ | No log | 4.6591 | 410 | 0.6485 | 0.4414 | 0.6485 | 0.8053 |
257
+ | No log | 4.6818 | 412 | 0.6671 | 0.4439 | 0.6671 | 0.8168 |
258
+ | No log | 4.7045 | 414 | 0.6982 | 0.4009 | 0.6982 | 0.8356 |
259
+ | No log | 4.7273 | 416 | 0.6752 | 0.3564 | 0.6752 | 0.8217 |
260
+ | No log | 4.75 | 418 | 0.7144 | 0.4409 | 0.7144 | 0.8452 |
261
+ | No log | 4.7727 | 420 | 0.7788 | 0.4761 | 0.7788 | 0.8825 |
262
+ | No log | 4.7955 | 422 | 0.7315 | 0.4893 | 0.7315 | 0.8553 |
263
+ | No log | 4.8182 | 424 | 0.6960 | 0.5116 | 0.6960 | 0.8343 |
264
+ | No log | 4.8409 | 426 | 0.6478 | 0.5175 | 0.6478 | 0.8049 |
265
+ | No log | 4.8636 | 428 | 0.6307 | 0.4552 | 0.6307 | 0.7942 |
266
+ | No log | 4.8864 | 430 | 0.6356 | 0.4552 | 0.6356 | 0.7972 |
267
+ | No log | 4.9091 | 432 | 0.6558 | 0.5104 | 0.6558 | 0.8098 |
268
+ | No log | 4.9318 | 434 | 0.6563 | 0.4512 | 0.6563 | 0.8101 |
269
+ | No log | 4.9545 | 436 | 0.6508 | 0.4605 | 0.6508 | 0.8067 |
270
+ | No log | 4.9773 | 438 | 0.6669 | 0.4489 | 0.6669 | 0.8166 |
271
+ | No log | 5.0 | 440 | 0.7254 | 0.5010 | 0.7254 | 0.8517 |
272
+ | No log | 5.0227 | 442 | 0.7170 | 0.4920 | 0.7170 | 0.8468 |
273
+ | No log | 5.0455 | 444 | 0.6645 | 0.4589 | 0.6645 | 0.8152 |
274
+ | No log | 5.0682 | 446 | 0.6340 | 0.4069 | 0.6340 | 0.7963 |
275
+ | No log | 5.0909 | 448 | 0.6355 | 0.4034 | 0.6355 | 0.7972 |
276
+ | No log | 5.1136 | 450 | 0.6422 | 0.3816 | 0.6422 | 0.8013 |
277
+ | No log | 5.1364 | 452 | 0.7194 | 0.4697 | 0.7194 | 0.8482 |
278
+ | No log | 5.1591 | 454 | 0.7931 | 0.4784 | 0.7931 | 0.8906 |
279
+ | No log | 5.1818 | 456 | 0.7231 | 0.4583 | 0.7231 | 0.8503 |
280
+ | No log | 5.2045 | 458 | 0.6598 | 0.3633 | 0.6598 | 0.8123 |
281
+ | No log | 5.2273 | 460 | 0.6538 | 0.3407 | 0.6538 | 0.8086 |
282
+ | No log | 5.25 | 462 | 0.6666 | 0.3823 | 0.6666 | 0.8165 |
283
+ | No log | 5.2727 | 464 | 0.6949 | 0.4055 | 0.6949 | 0.8336 |
284
+ | No log | 5.2955 | 466 | 0.6988 | 0.4023 | 0.6988 | 0.8360 |
285
+ | No log | 5.3182 | 468 | 0.6973 | 0.3928 | 0.6973 | 0.8351 |
286
+ | No log | 5.3409 | 470 | 0.7257 | 0.4026 | 0.7257 | 0.8519 |
287
+ | No log | 5.3636 | 472 | 0.7213 | 0.3810 | 0.7213 | 0.8493 |
288
+ | No log | 5.3864 | 474 | 0.6966 | 0.3327 | 0.6966 | 0.8346 |
289
+ | No log | 5.4091 | 476 | 0.6982 | 0.3935 | 0.6982 | 0.8356 |
290
+ | No log | 5.4318 | 478 | 0.6976 | 0.4427 | 0.6976 | 0.8352 |
291
+ | No log | 5.4545 | 480 | 0.6914 | 0.4557 | 0.6914 | 0.8315 |
292
+ | No log | 5.4773 | 482 | 0.6623 | 0.4612 | 0.6623 | 0.8138 |
293
+ | No log | 5.5 | 484 | 0.6369 | 0.3782 | 0.6369 | 0.7981 |
294
+ | No log | 5.5227 | 486 | 0.6329 | 0.3758 | 0.6329 | 0.7955 |
295
+ | No log | 5.5455 | 488 | 0.6511 | 0.4512 | 0.6511 | 0.8069 |
296
+ | No log | 5.5682 | 490 | 0.7272 | 0.4779 | 0.7272 | 0.8528 |
297
+ | No log | 5.5909 | 492 | 0.7207 | 0.4717 | 0.7207 | 0.8489 |
298
+ | No log | 5.6136 | 494 | 0.6907 | 0.4940 | 0.6907 | 0.8311 |
299
+ | No log | 5.6364 | 496 | 0.6384 | 0.4982 | 0.6384 | 0.7990 |
300
+ | No log | 5.6591 | 498 | 0.6265 | 0.3600 | 0.6265 | 0.7915 |
301
+ | 0.3618 | 5.6818 | 500 | 0.6339 | 0.4499 | 0.6339 | 0.7962 |
302
+ | 0.3618 | 5.7045 | 502 | 0.6275 | 0.3691 | 0.6275 | 0.7921 |
303
+ | 0.3618 | 5.7273 | 504 | 0.6202 | 0.3803 | 0.6202 | 0.7875 |
304
+ | 0.3618 | 5.75 | 506 | 0.6399 | 0.4618 | 0.6399 | 0.7999 |
305
+ | 0.3618 | 5.7727 | 508 | 0.6272 | 0.4598 | 0.6272 | 0.7920 |
306
+ | 0.3618 | 5.7955 | 510 | 0.6046 | 0.4311 | 0.6046 | 0.7776 |
307
+ | 0.3618 | 5.8182 | 512 | 0.6047 | 0.3685 | 0.6047 | 0.7776 |
308
+ | 0.3618 | 5.8409 | 514 | 0.6051 | 0.3934 | 0.6051 | 0.7779 |
309
+ | 0.3618 | 5.8636 | 516 | 0.6723 | 0.4926 | 0.6723 | 0.8199 |
310
+ | 0.3618 | 5.8864 | 518 | 0.7544 | 0.5022 | 0.7544 | 0.8686 |
311
+ | 0.3618 | 5.9091 | 520 | 0.7264 | 0.4467 | 0.7264 | 0.8523 |
312
+ | 0.3618 | 5.9318 | 522 | 0.7133 | 0.4169 | 0.7133 | 0.8446 |
313
+ | 0.3618 | 5.9545 | 524 | 0.7436 | 0.4554 | 0.7436 | 0.8623 |
314
+ | 0.3618 | 5.9773 | 526 | 0.7340 | 0.3909 | 0.7340 | 0.8567 |
315
+ | 0.3618 | 6.0 | 528 | 0.7557 | 0.4029 | 0.7557 | 0.8693 |
316
+ | 0.3618 | 6.0227 | 530 | 0.8114 | 0.4301 | 0.8114 | 0.9008 |
317
+ | 0.3618 | 6.0455 | 532 | 0.7770 | 0.4721 | 0.7770 | 0.8815 |
318
+ | 0.3618 | 6.0682 | 534 | 0.7087 | 0.4586 | 0.7087 | 0.8419 |
319
+ | 0.3618 | 6.0909 | 536 | 0.6736 | 0.4255 | 0.6736 | 0.8207 |
320
+ | 0.3618 | 6.1136 | 538 | 0.6666 | 0.4250 | 0.6666 | 0.8164 |
321
+ | 0.3618 | 6.1364 | 540 | 0.7008 | 0.4733 | 0.7008 | 0.8371 |
322
+ | 0.3618 | 6.1591 | 542 | 0.7102 | 0.5017 | 0.7102 | 0.8427 |
323
+ | 0.3618 | 6.1818 | 544 | 0.7393 | 0.4970 | 0.7393 | 0.8598 |
324
+ | 0.3618 | 6.2045 | 546 | 0.7602 | 0.4639 | 0.7602 | 0.8719 |
325
+ | 0.3618 | 6.2273 | 548 | 0.7329 | 0.4697 | 0.7329 | 0.8561 |
326
+ | 0.3618 | 6.25 | 550 | 0.7079 | 0.4929 | 0.7079 | 0.8414 |
327
+ | 0.3618 | 6.2727 | 552 | 0.6993 | 0.4481 | 0.6993 | 0.8362 |
328
+ | 0.3618 | 6.2955 | 554 | 0.7050 | 0.4266 | 0.7050 | 0.8396 |
329
+ | 0.3618 | 6.3182 | 556 | 0.7176 | 0.4350 | 0.7176 | 0.8471 |
330
+ | 0.3618 | 6.3409 | 558 | 0.7902 | 0.4339 | 0.7902 | 0.8890 |
331
+ | 0.3618 | 6.3636 | 560 | 0.7959 | 0.4516 | 0.7959 | 0.8921 |
332
+ | 0.3618 | 6.3864 | 562 | 0.6976 | 0.4053 | 0.6976 | 0.8352 |
333
+ | 0.3618 | 6.4091 | 564 | 0.6501 | 0.4139 | 0.6501 | 0.8063 |
334
+ | 0.3618 | 6.4318 | 566 | 0.6532 | 0.4284 | 0.6532 | 0.8082 |
335
+ | 0.3618 | 6.4545 | 568 | 0.6911 | 0.4650 | 0.6911 | 0.8313 |
336
+ | 0.3618 | 6.4773 | 570 | 0.7375 | 0.4380 | 0.7375 | 0.8588 |
337
+ | 0.3618 | 6.5 | 572 | 0.7097 | 0.4285 | 0.7097 | 0.8424 |
338
+ | 0.3618 | 6.5227 | 574 | 0.6629 | 0.4562 | 0.6629 | 0.8142 |
339
+ | 0.3618 | 6.5455 | 576 | 0.6801 | 0.4462 | 0.6801 | 0.8247 |
340
+ | 0.3618 | 6.5682 | 578 | 0.6980 | 0.4553 | 0.6980 | 0.8355 |
341
+ | 0.3618 | 6.5909 | 580 | 0.7465 | 0.5169 | 0.7465 | 0.8640 |
342
+ | 0.3618 | 6.6136 | 582 | 0.7345 | 0.5027 | 0.7345 | 0.8570 |
343
+ | 0.3618 | 6.6364 | 584 | 0.7065 | 0.5015 | 0.7065 | 0.8405 |
344
+ | 0.3618 | 6.6591 | 586 | 0.6669 | 0.4940 | 0.6669 | 0.8167 |
345
+ | 0.3618 | 6.6818 | 588 | 0.6539 | 0.4864 | 0.6539 | 0.8086 |
346
+ | 0.3618 | 6.7045 | 590 | 0.6542 | 0.4437 | 0.6542 | 0.8088 |
347
+ | 0.3618 | 6.7273 | 592 | 0.6299 | 0.4756 | 0.6299 | 0.7937 |
348
+ | 0.3618 | 6.75 | 594 | 0.6388 | 0.4459 | 0.6388 | 0.7992 |
349
+ | 0.3618 | 6.7727 | 596 | 0.6488 | 0.4428 | 0.6488 | 0.8055 |
350
+ | 0.3618 | 6.7955 | 598 | 0.6340 | 0.4644 | 0.6340 | 0.7962 |
351
+ | 0.3618 | 6.8182 | 600 | 0.6274 | 0.4564 | 0.6274 | 0.7921 |
352
+ | 0.3618 | 6.8409 | 602 | 0.6242 | 0.4473 | 0.6242 | 0.7901 |
353
+ | 0.3618 | 6.8636 | 604 | 0.6225 | 0.4446 | 0.6225 | 0.7890 |
354
+ | 0.3618 | 6.8864 | 606 | 0.6256 | 0.4607 | 0.6256 | 0.7909 |
355
+ | 0.3618 | 6.9091 | 608 | 0.6334 | 0.4498 | 0.6334 | 0.7959 |
356
+ | 0.3618 | 6.9318 | 610 | 0.6374 | 0.4644 | 0.6374 | 0.7984 |
357
+ | 0.3618 | 6.9545 | 612 | 0.6589 | 0.4483 | 0.6589 | 0.8117 |
358
+ | 0.3618 | 6.9773 | 614 | 0.6576 | 0.4452 | 0.6576 | 0.8109 |
359
+ | 0.3618 | 7.0 | 616 | 0.6338 | 0.4432 | 0.6338 | 0.7961 |
360
+ | 0.3618 | 7.0227 | 618 | 0.6434 | 0.4583 | 0.6434 | 0.8021 |
361
+ | 0.3618 | 7.0455 | 620 | 0.6411 | 0.4592 | 0.6411 | 0.8007 |
362
+ | 0.3618 | 7.0682 | 622 | 0.6224 | 0.4204 | 0.6224 | 0.7889 |
363
+ | 0.3618 | 7.0909 | 624 | 0.6330 | 0.3887 | 0.6330 | 0.7956 |
364
+ | 0.3618 | 7.1136 | 626 | 0.6367 | 0.3848 | 0.6367 | 0.7980 |
365
+ | 0.3618 | 7.1364 | 628 | 0.6243 | 0.4267 | 0.6243 | 0.7901 |
366
+ | 0.3618 | 7.1591 | 630 | 0.6216 | 0.4473 | 0.6216 | 0.7884 |
367
+
368
+
369
+ ### Framework versions
370
+
371
+ - Transformers 4.44.2
372
+ - Pytorch 2.4.0+cu118
373
+ - Datasets 2.21.0
374
+ - Tokenizers 0.19.1
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "aubmindlab/bert-base-arabertv02",
3
+ "architectures": [
4
+ "BertForSequenceClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 768,
11
+ "id2label": {
12
+ "0": "LABEL_0"
13
+ },
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "label2id": {
17
+ "LABEL_0": 0
18
+ },
19
+ "layer_norm_eps": 1e-12,
20
+ "max_position_embeddings": 512,
21
+ "model_type": "bert",
22
+ "num_attention_heads": 12,
23
+ "num_hidden_layers": 12,
24
+ "pad_token_id": 0,
25
+ "position_embedding_type": "absolute",
26
+ "problem_type": "regression",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.44.2",
29
+ "type_vocab_size": 2,
30
+ "use_cache": true,
31
+ "vocab_size": 64000
32
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c9f3d94449daa1fa48e12476387a1f396ac8af6cc648c495fd9e3d9da6def060
3
+ size 540799996
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:be51b63b91cb6ffa021d654edb6b03861dc9b89b999485df5e4bc90806f6ce2c
3
+ size 5304