MayBashendy commited on
Commit
3abb2c8
·
verified ·
1 Parent(s): f8f1888

Training in progress, step 500

Browse files
Files changed (4) hide show
  1. README.md +332 -0
  2. config.json +32 -0
  3. model.safetensors +3 -0
  4. training_args.bin +3 -0
README.md ADDED
@@ -0,0 +1,332 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ base_model: aubmindlab/bert-base-arabertv02
4
+ tags:
5
+ - generated_from_trainer
6
+ model-index:
7
+ - name: ArabicNewSplits7_usingWellWrittenEssays_FineTuningAraBERT_run2_AugV5_k8_task1_organization
8
+ results: []
9
+ ---
10
+
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
+
14
+ # ArabicNewSplits7_usingWellWrittenEssays_FineTuningAraBERT_run2_AugV5_k8_task1_organization
15
+
16
+ This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset.
17
+ It achieves the following results on the evaluation set:
18
+ - Loss: 1.3387
19
+ - Qwk: 0.4511
20
+ - Mse: 1.3387
21
+ - Rmse: 1.1570
22
+
23
+ ## Model description
24
+
25
+ More information needed
26
+
27
+ ## Intended uses & limitations
28
+
29
+ More information needed
30
+
31
+ ## Training and evaluation data
32
+
33
+ More information needed
34
+
35
+ ## Training procedure
36
+
37
+ ### Training hyperparameters
38
+
39
+ The following hyperparameters were used during training:
40
+ - learning_rate: 2e-05
41
+ - train_batch_size: 8
42
+ - eval_batch_size: 8
43
+ - seed: 42
44
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
45
+ - lr_scheduler_type: linear
46
+ - num_epochs: 100
47
+
48
+ ### Training results
49
+
50
+ | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse |
51
+ |:-------------:|:-------:|:----:|:---------------:|:-------:|:------:|:------:|
52
+ | No log | 0.0571 | 2 | 7.8971 | -0.0488 | 7.8971 | 2.8102 |
53
+ | No log | 0.1143 | 4 | 4.2692 | 0.1083 | 4.2692 | 2.0662 |
54
+ | No log | 0.1714 | 6 | 2.9770 | 0.0755 | 2.9770 | 1.7254 |
55
+ | No log | 0.2286 | 8 | 2.6938 | 0.1325 | 2.6938 | 1.6413 |
56
+ | No log | 0.2857 | 10 | 2.4618 | 0.0588 | 2.4618 | 1.5690 |
57
+ | No log | 0.3429 | 12 | 2.1499 | 0.0438 | 2.1499 | 1.4662 |
58
+ | No log | 0.4 | 14 | 2.8612 | 0.0 | 2.8612 | 1.6915 |
59
+ | No log | 0.4571 | 16 | 3.1492 | 0.0385 | 3.1492 | 1.7746 |
60
+ | No log | 0.5143 | 18 | 2.6081 | 0.0 | 2.6081 | 1.6150 |
61
+ | No log | 0.5714 | 20 | 1.8406 | 0.1509 | 1.8406 | 1.3567 |
62
+ | No log | 0.6286 | 22 | 1.6590 | 0.1869 | 1.6590 | 1.2880 |
63
+ | No log | 0.6857 | 24 | 1.6660 | 0.2569 | 1.6660 | 1.2907 |
64
+ | No log | 0.7429 | 26 | 1.6551 | 0.0396 | 1.6551 | 1.2865 |
65
+ | No log | 0.8 | 28 | 1.6364 | 0.0784 | 1.6364 | 1.2792 |
66
+ | No log | 0.8571 | 30 | 1.8161 | 0.1333 | 1.8161 | 1.3476 |
67
+ | No log | 0.9143 | 32 | 1.8756 | 0.3333 | 1.8756 | 1.3695 |
68
+ | No log | 0.9714 | 34 | 1.9783 | 0.2258 | 1.9783 | 1.4065 |
69
+ | No log | 1.0286 | 36 | 2.1328 | 0.1926 | 2.1328 | 1.4604 |
70
+ | No log | 1.0857 | 38 | 2.2200 | 0.1295 | 2.2200 | 1.4900 |
71
+ | No log | 1.1429 | 40 | 1.9227 | 0.2381 | 1.9227 | 1.3866 |
72
+ | No log | 1.2 | 42 | 1.6596 | 0.1947 | 1.6596 | 1.2882 |
73
+ | No log | 1.2571 | 44 | 1.5541 | 0.1786 | 1.5541 | 1.2466 |
74
+ | No log | 1.3143 | 46 | 1.5508 | 0.2931 | 1.5508 | 1.2453 |
75
+ | No log | 1.3714 | 48 | 1.7749 | 0.2927 | 1.7749 | 1.3323 |
76
+ | No log | 1.4286 | 50 | 1.9776 | 0.3158 | 1.9776 | 1.4063 |
77
+ | No log | 1.4857 | 52 | 1.9333 | 0.3053 | 1.9333 | 1.3904 |
78
+ | No log | 1.5429 | 54 | 1.5656 | 0.3306 | 1.5656 | 1.2512 |
79
+ | No log | 1.6 | 56 | 1.3231 | 0.3860 | 1.3231 | 1.1502 |
80
+ | No log | 1.6571 | 58 | 1.3697 | 0.4576 | 1.3697 | 1.1704 |
81
+ | No log | 1.7143 | 60 | 1.3793 | 0.4333 | 1.3793 | 1.1744 |
82
+ | No log | 1.7714 | 62 | 1.2902 | 0.4754 | 1.2902 | 1.1359 |
83
+ | No log | 1.8286 | 64 | 1.2405 | 0.5 | 1.2405 | 1.1138 |
84
+ | No log | 1.8857 | 66 | 1.2592 | 0.5041 | 1.2592 | 1.1221 |
85
+ | No log | 1.9429 | 68 | 1.2187 | 0.528 | 1.2187 | 1.1040 |
86
+ | No log | 2.0 | 70 | 1.1710 | 0.512 | 1.1710 | 1.0821 |
87
+ | No log | 2.0571 | 72 | 1.1671 | 0.512 | 1.1671 | 1.0803 |
88
+ | No log | 2.1143 | 74 | 1.2545 | 0.4651 | 1.2545 | 1.1200 |
89
+ | No log | 2.1714 | 76 | 1.5055 | 0.4148 | 1.5055 | 1.2270 |
90
+ | No log | 2.2286 | 78 | 1.6833 | 0.2963 | 1.6833 | 1.2974 |
91
+ | No log | 2.2857 | 80 | 1.3865 | 0.4394 | 1.3865 | 1.1775 |
92
+ | No log | 2.3429 | 82 | 1.2286 | 0.4511 | 1.2286 | 1.1084 |
93
+ | No log | 2.4 | 84 | 1.2475 | 0.4341 | 1.2475 | 1.1169 |
94
+ | No log | 2.4571 | 86 | 1.3297 | 0.3902 | 1.3297 | 1.1531 |
95
+ | No log | 2.5143 | 88 | 1.5128 | 0.4060 | 1.5128 | 1.2300 |
96
+ | No log | 2.5714 | 90 | 1.7091 | 0.3121 | 1.7091 | 1.3073 |
97
+ | No log | 2.6286 | 92 | 1.6823 | 0.3000 | 1.6823 | 1.2970 |
98
+ | No log | 2.6857 | 94 | 1.5566 | 0.4308 | 1.5566 | 1.2476 |
99
+ | No log | 2.7429 | 96 | 1.3874 | 0.4132 | 1.3874 | 1.1779 |
100
+ | No log | 2.8 | 98 | 1.2925 | 0.4167 | 1.2925 | 1.1369 |
101
+ | No log | 2.8571 | 100 | 1.2380 | 0.3866 | 1.2380 | 1.1126 |
102
+ | No log | 2.9143 | 102 | 1.2908 | 0.5156 | 1.2908 | 1.1361 |
103
+ | No log | 2.9714 | 104 | 1.6087 | 0.3165 | 1.6087 | 1.2684 |
104
+ | No log | 3.0286 | 106 | 1.7281 | 0.2837 | 1.7281 | 1.3146 |
105
+ | No log | 3.0857 | 108 | 1.5231 | 0.3358 | 1.5231 | 1.2341 |
106
+ | No log | 3.1429 | 110 | 1.4107 | 0.4559 | 1.4107 | 1.1877 |
107
+ | No log | 3.2 | 112 | 1.2699 | 0.4928 | 1.2699 | 1.1269 |
108
+ | No log | 3.2571 | 114 | 1.2081 | 0.5612 | 1.2081 | 1.0991 |
109
+ | No log | 3.3143 | 116 | 1.2825 | 0.5072 | 1.2825 | 1.1325 |
110
+ | No log | 3.3714 | 118 | 1.4306 | 0.4380 | 1.4306 | 1.1961 |
111
+ | No log | 3.4286 | 120 | 1.5109 | 0.4511 | 1.5109 | 1.2292 |
112
+ | No log | 3.4857 | 122 | 1.5180 | 0.4062 | 1.5180 | 1.2321 |
113
+ | No log | 3.5429 | 124 | 1.5236 | 0.3140 | 1.5236 | 1.2343 |
114
+ | No log | 3.6 | 126 | 1.4921 | 0.3590 | 1.4921 | 1.2215 |
115
+ | No log | 3.6571 | 128 | 1.5146 | 0.3840 | 1.5146 | 1.2307 |
116
+ | No log | 3.7143 | 130 | 1.5359 | 0.4091 | 1.5359 | 1.2393 |
117
+ | No log | 3.7714 | 132 | 1.5010 | 0.4545 | 1.5010 | 1.2252 |
118
+ | No log | 3.8286 | 134 | 1.3485 | 0.4615 | 1.3485 | 1.1613 |
119
+ | No log | 3.8857 | 136 | 1.2171 | 0.4925 | 1.2171 | 1.1032 |
120
+ | No log | 3.9429 | 138 | 1.1916 | 0.5373 | 1.1916 | 1.0916 |
121
+ | No log | 4.0 | 140 | 1.3186 | 0.5143 | 1.3186 | 1.1483 |
122
+ | No log | 4.0571 | 142 | 1.6944 | 0.3022 | 1.6944 | 1.3017 |
123
+ | No log | 4.1143 | 144 | 1.8895 | 0.2837 | 1.8895 | 1.3746 |
124
+ | No log | 4.1714 | 146 | 1.6599 | 0.3504 | 1.6599 | 1.2884 |
125
+ | No log | 4.2286 | 148 | 1.4083 | 0.4462 | 1.4083 | 1.1867 |
126
+ | No log | 4.2857 | 150 | 1.5026 | 0.4275 | 1.5026 | 1.2258 |
127
+ | No log | 4.3429 | 152 | 1.6342 | 0.3731 | 1.6342 | 1.2784 |
128
+ | No log | 4.4 | 154 | 1.5795 | 0.3609 | 1.5795 | 1.2568 |
129
+ | No log | 4.4571 | 156 | 1.4384 | 0.4462 | 1.4384 | 1.1993 |
130
+ | No log | 4.5143 | 158 | 1.2265 | 0.4688 | 1.2265 | 1.1075 |
131
+ | No log | 4.5714 | 160 | 1.2331 | 0.4567 | 1.2331 | 1.1105 |
132
+ | No log | 4.6286 | 162 | 1.4083 | 0.4651 | 1.4083 | 1.1867 |
133
+ | No log | 4.6857 | 164 | 1.4526 | 0.4375 | 1.4526 | 1.2053 |
134
+ | No log | 4.7429 | 166 | 1.4067 | 0.4375 | 1.4067 | 1.1860 |
135
+ | No log | 4.8 | 168 | 1.3382 | 0.4651 | 1.3382 | 1.1568 |
136
+ | No log | 4.8571 | 170 | 1.3941 | 0.4651 | 1.3941 | 1.1807 |
137
+ | No log | 4.9143 | 172 | 1.6014 | 0.3433 | 1.6014 | 1.2655 |
138
+ | No log | 4.9714 | 174 | 1.5992 | 0.3529 | 1.5992 | 1.2646 |
139
+ | No log | 5.0286 | 176 | 1.4302 | 0.4122 | 1.4302 | 1.1959 |
140
+ | No log | 5.0857 | 178 | 1.2855 | 0.4262 | 1.2855 | 1.1338 |
141
+ | No log | 5.1429 | 180 | 1.2955 | 0.4202 | 1.2955 | 1.1382 |
142
+ | No log | 5.2 | 182 | 1.4082 | 0.4409 | 1.4082 | 1.1867 |
143
+ | No log | 5.2571 | 184 | 1.5318 | 0.4031 | 1.5318 | 1.2377 |
144
+ | No log | 5.3143 | 186 | 1.4883 | 0.4375 | 1.4883 | 1.2200 |
145
+ | No log | 5.3714 | 188 | 1.3764 | 0.4286 | 1.3764 | 1.1732 |
146
+ | No log | 5.4286 | 190 | 1.2974 | 0.4531 | 1.2974 | 1.1390 |
147
+ | No log | 5.4857 | 192 | 1.2802 | 0.4962 | 1.2802 | 1.1315 |
148
+ | No log | 5.5429 | 194 | 1.4560 | 0.3803 | 1.4560 | 1.2067 |
149
+ | No log | 5.6 | 196 | 1.6795 | 0.3776 | 1.6795 | 1.2960 |
150
+ | No log | 5.6571 | 198 | 1.8191 | 0.3333 | 1.8191 | 1.3487 |
151
+ | No log | 5.7143 | 200 | 1.6083 | 0.3529 | 1.6083 | 1.2682 |
152
+ | No log | 5.7714 | 202 | 1.4407 | 0.4462 | 1.4407 | 1.2003 |
153
+ | No log | 5.8286 | 204 | 1.3305 | 0.4806 | 1.3305 | 1.1535 |
154
+ | No log | 5.8857 | 206 | 1.3381 | 0.4923 | 1.3381 | 1.1567 |
155
+ | No log | 5.9429 | 208 | 1.3203 | 0.4923 | 1.3203 | 1.1491 |
156
+ | No log | 6.0 | 210 | 1.4833 | 0.4225 | 1.4833 | 1.2179 |
157
+ | No log | 6.0571 | 212 | 1.5823 | 0.4196 | 1.5823 | 1.2579 |
158
+ | No log | 6.1143 | 214 | 1.8293 | 0.3217 | 1.8293 | 1.3525 |
159
+ | No log | 6.1714 | 216 | 1.8516 | 0.3121 | 1.8516 | 1.3608 |
160
+ | No log | 6.2286 | 218 | 1.6327 | 0.3676 | 1.6327 | 1.2778 |
161
+ | No log | 6.2857 | 220 | 1.3355 | 0.4882 | 1.3355 | 1.1556 |
162
+ | No log | 6.3429 | 222 | 1.2057 | 0.4786 | 1.2057 | 1.0980 |
163
+ | No log | 6.4 | 224 | 1.2034 | 0.3793 | 1.2034 | 1.0970 |
164
+ | No log | 6.4571 | 226 | 1.2060 | 0.4793 | 1.2060 | 1.0982 |
165
+ | No log | 6.5143 | 228 | 1.4369 | 0.4662 | 1.4369 | 1.1987 |
166
+ | No log | 6.5714 | 230 | 1.8460 | 0.2676 | 1.8460 | 1.3587 |
167
+ | No log | 6.6286 | 232 | 2.1866 | 0.1944 | 2.1866 | 1.4787 |
168
+ | No log | 6.6857 | 234 | 2.1626 | 0.2378 | 2.1626 | 1.4706 |
169
+ | No log | 6.7429 | 236 | 1.8781 | 0.3099 | 1.8781 | 1.3705 |
170
+ | No log | 6.8 | 238 | 1.5049 | 0.3857 | 1.5049 | 1.2267 |
171
+ | No log | 6.8571 | 240 | 1.2911 | 0.5441 | 1.2911 | 1.1362 |
172
+ | No log | 6.9143 | 242 | 1.2944 | 0.5344 | 1.2944 | 1.1377 |
173
+ | No log | 6.9714 | 244 | 1.4186 | 0.4733 | 1.4186 | 1.1911 |
174
+ | No log | 7.0286 | 246 | 1.4860 | 0.4733 | 1.4860 | 1.2190 |
175
+ | No log | 7.0857 | 248 | 1.4786 | 0.4733 | 1.4786 | 1.2160 |
176
+ | No log | 7.1429 | 250 | 1.3945 | 0.4806 | 1.3945 | 1.1809 |
177
+ | No log | 7.2 | 252 | 1.3787 | 0.4733 | 1.3787 | 1.1742 |
178
+ | No log | 7.2571 | 254 | 1.5197 | 0.4030 | 1.5197 | 1.2328 |
179
+ | No log | 7.3143 | 256 | 1.6895 | 0.3309 | 1.6895 | 1.2998 |
180
+ | No log | 7.3714 | 258 | 1.6418 | 0.3478 | 1.6418 | 1.2813 |
181
+ | No log | 7.4286 | 260 | 1.4936 | 0.3504 | 1.4936 | 1.2221 |
182
+ | No log | 7.4857 | 262 | 1.3778 | 0.4706 | 1.3778 | 1.1738 |
183
+ | No log | 7.5429 | 264 | 1.3457 | 0.4889 | 1.3457 | 1.1601 |
184
+ | No log | 7.6 | 266 | 1.2712 | 0.4812 | 1.2712 | 1.1275 |
185
+ | No log | 7.6571 | 268 | 1.2044 | 0.4848 | 1.2044 | 1.0974 |
186
+ | No log | 7.7143 | 270 | 1.2955 | 0.4925 | 1.2955 | 1.1382 |
187
+ | No log | 7.7714 | 272 | 1.3563 | 0.4394 | 1.3563 | 1.1646 |
188
+ | No log | 7.8286 | 274 | 1.3423 | 0.4394 | 1.3423 | 1.1586 |
189
+ | No log | 7.8857 | 276 | 1.2152 | 0.5344 | 1.2152 | 1.1024 |
190
+ | No log | 7.9429 | 278 | 1.1805 | 0.5426 | 1.1805 | 1.0865 |
191
+ | No log | 8.0 | 280 | 1.1095 | 0.5512 | 1.1095 | 1.0533 |
192
+ | No log | 8.0571 | 282 | 1.0706 | 0.5760 | 1.0706 | 1.0347 |
193
+ | No log | 8.1143 | 284 | 1.0925 | 0.5397 | 1.0925 | 1.0452 |
194
+ | No log | 8.1714 | 286 | 1.0652 | 0.56 | 1.0652 | 1.0321 |
195
+ | No log | 8.2286 | 288 | 1.0840 | 0.5397 | 1.0840 | 1.0412 |
196
+ | No log | 8.2857 | 290 | 1.1812 | 0.5581 | 1.1812 | 1.0868 |
197
+ | No log | 8.3429 | 292 | 1.2814 | 0.4769 | 1.2814 | 1.1320 |
198
+ | No log | 8.4 | 294 | 1.3295 | 0.4580 | 1.3295 | 1.1530 |
199
+ | No log | 8.4571 | 296 | 1.3056 | 0.4923 | 1.3056 | 1.1426 |
200
+ | No log | 8.5143 | 298 | 1.3619 | 0.4806 | 1.3619 | 1.1670 |
201
+ | No log | 8.5714 | 300 | 1.3855 | 0.4882 | 1.3855 | 1.1771 |
202
+ | No log | 8.6286 | 302 | 1.3425 | 0.5354 | 1.3425 | 1.1587 |
203
+ | No log | 8.6857 | 304 | 1.3078 | 0.5354 | 1.3078 | 1.1436 |
204
+ | No log | 8.7429 | 306 | 1.3809 | 0.4882 | 1.3809 | 1.1751 |
205
+ | No log | 8.8 | 308 | 1.5788 | 0.3768 | 1.5788 | 1.2565 |
206
+ | No log | 8.8571 | 310 | 1.6174 | 0.3188 | 1.6174 | 1.2718 |
207
+ | No log | 8.9143 | 312 | 1.4495 | 0.3704 | 1.4495 | 1.2040 |
208
+ | No log | 8.9714 | 314 | 1.2104 | 0.5469 | 1.2104 | 1.1002 |
209
+ | No log | 9.0286 | 316 | 1.1385 | 0.56 | 1.1385 | 1.0670 |
210
+ | No log | 9.0857 | 318 | 1.1854 | 0.5484 | 1.1854 | 1.0888 |
211
+ | No log | 9.1429 | 320 | 1.2270 | 0.5 | 1.2270 | 1.1077 |
212
+ | No log | 9.2 | 322 | 1.2502 | 0.5082 | 1.2502 | 1.1181 |
213
+ | No log | 9.2571 | 324 | 1.2686 | 0.528 | 1.2686 | 1.1263 |
214
+ | No log | 9.3143 | 326 | 1.3503 | 0.5116 | 1.3503 | 1.1620 |
215
+ | No log | 9.3714 | 328 | 1.4406 | 0.3939 | 1.4406 | 1.2002 |
216
+ | No log | 9.4286 | 330 | 1.5286 | 0.3407 | 1.5286 | 1.2364 |
217
+ | No log | 9.4857 | 332 | 1.4310 | 0.4545 | 1.4310 | 1.1963 |
218
+ | No log | 9.5429 | 334 | 1.2901 | 0.5156 | 1.2901 | 1.1358 |
219
+ | No log | 9.6 | 336 | 1.2716 | 0.5077 | 1.2716 | 1.1277 |
220
+ | No log | 9.6571 | 338 | 1.3684 | 0.4848 | 1.3684 | 1.1698 |
221
+ | No log | 9.7143 | 340 | 1.5580 | 0.3824 | 1.5580 | 1.2482 |
222
+ | No log | 9.7714 | 342 | 1.6284 | 0.3212 | 1.6284 | 1.2761 |
223
+ | No log | 9.8286 | 344 | 1.7627 | 0.2609 | 1.7627 | 1.3277 |
224
+ | No log | 9.8857 | 346 | 1.7671 | 0.3043 | 1.7671 | 1.3293 |
225
+ | No log | 9.9429 | 348 | 1.5875 | 0.3459 | 1.5875 | 1.2600 |
226
+ | No log | 10.0 | 350 | 1.3573 | 0.4878 | 1.3573 | 1.1650 |
227
+ | No log | 10.0571 | 352 | 1.2772 | 0.4878 | 1.2772 | 1.1301 |
228
+ | No log | 10.1143 | 354 | 1.2426 | 0.4878 | 1.2426 | 1.1147 |
229
+ | No log | 10.1714 | 356 | 1.2924 | 0.4762 | 1.2924 | 1.1369 |
230
+ | No log | 10.2286 | 358 | 1.4478 | 0.3881 | 1.4478 | 1.2032 |
231
+ | No log | 10.2857 | 360 | 1.5312 | 0.3824 | 1.5312 | 1.2374 |
232
+ | No log | 10.3429 | 362 | 1.7831 | 0.3043 | 1.7831 | 1.3353 |
233
+ | No log | 10.4 | 364 | 1.8611 | 0.2878 | 1.8611 | 1.3642 |
234
+ | No log | 10.4571 | 366 | 1.8361 | 0.3143 | 1.8361 | 1.3550 |
235
+ | No log | 10.5143 | 368 | 1.5201 | 0.3942 | 1.5201 | 1.2329 |
236
+ | No log | 10.5714 | 370 | 1.3195 | 0.4627 | 1.3195 | 1.1487 |
237
+ | No log | 10.6286 | 372 | 1.3316 | 0.4627 | 1.3316 | 1.1539 |
238
+ | No log | 10.6857 | 374 | 1.4720 | 0.3852 | 1.4720 | 1.2133 |
239
+ | No log | 10.7429 | 376 | 1.4841 | 0.3852 | 1.4841 | 1.2183 |
240
+ | No log | 10.8 | 378 | 1.3361 | 0.4308 | 1.3361 | 1.1559 |
241
+ | No log | 10.8571 | 380 | 1.3130 | 0.4308 | 1.3130 | 1.1459 |
242
+ | No log | 10.9143 | 382 | 1.3427 | 0.4308 | 1.3427 | 1.1587 |
243
+ | No log | 10.9714 | 384 | 1.4857 | 0.3881 | 1.4857 | 1.2189 |
244
+ | No log | 11.0286 | 386 | 1.5731 | 0.3650 | 1.5731 | 1.2542 |
245
+ | No log | 11.0857 | 388 | 1.6306 | 0.3650 | 1.6306 | 1.2770 |
246
+ | No log | 11.1429 | 390 | 1.5630 | 0.3609 | 1.5630 | 1.2502 |
247
+ | No log | 11.2 | 392 | 1.4461 | 0.4409 | 1.4461 | 1.2025 |
248
+ | No log | 11.2571 | 394 | 1.4270 | 0.4839 | 1.4270 | 1.1946 |
249
+ | No log | 11.3143 | 396 | 1.4454 | 0.4839 | 1.4454 | 1.2022 |
250
+ | No log | 11.3714 | 398 | 1.4831 | 0.4219 | 1.4831 | 1.2178 |
251
+ | No log | 11.4286 | 400 | 1.5057 | 0.3511 | 1.5057 | 1.2271 |
252
+ | No log | 11.4857 | 402 | 1.4607 | 0.3538 | 1.4607 | 1.2086 |
253
+ | No log | 11.5429 | 404 | 1.4888 | 0.3636 | 1.4888 | 1.2201 |
254
+ | No log | 11.6 | 406 | 1.4397 | 0.3538 | 1.4397 | 1.1999 |
255
+ | No log | 11.6571 | 408 | 1.4551 | 0.3538 | 1.4551 | 1.2063 |
256
+ | No log | 11.7143 | 410 | 1.4907 | 0.3538 | 1.4907 | 1.2209 |
257
+ | No log | 11.7714 | 412 | 1.5013 | 0.3538 | 1.5013 | 1.2253 |
258
+ | No log | 11.8286 | 414 | 1.4711 | 0.3538 | 1.4711 | 1.2129 |
259
+ | No log | 11.8857 | 416 | 1.5223 | 0.3538 | 1.5223 | 1.2338 |
260
+ | No log | 11.9429 | 418 | 1.5365 | 0.3538 | 1.5365 | 1.2396 |
261
+ | No log | 12.0 | 420 | 1.5043 | 0.3538 | 1.5043 | 1.2265 |
262
+ | No log | 12.0571 | 422 | 1.5854 | 0.3433 | 1.5854 | 1.2591 |
263
+ | No log | 12.1143 | 424 | 1.5760 | 0.3676 | 1.5760 | 1.2554 |
264
+ | No log | 12.1714 | 426 | 1.4107 | 0.3538 | 1.4107 | 1.1877 |
265
+ | No log | 12.2286 | 428 | 1.3246 | 0.3939 | 1.3246 | 1.1509 |
266
+ | No log | 12.2857 | 430 | 1.2031 | 0.4687 | 1.2031 | 1.0969 |
267
+ | No log | 12.3429 | 432 | 1.1739 | 0.5238 | 1.1739 | 1.0835 |
268
+ | No log | 12.4 | 434 | 1.2436 | 0.4531 | 1.2436 | 1.1151 |
269
+ | No log | 12.4571 | 436 | 1.4317 | 0.3788 | 1.4317 | 1.1966 |
270
+ | No log | 12.5143 | 438 | 1.4903 | 0.3485 | 1.4903 | 1.2208 |
271
+ | No log | 12.5714 | 440 | 1.4153 | 0.3721 | 1.4153 | 1.1896 |
272
+ | No log | 12.6286 | 442 | 1.2769 | 0.4882 | 1.2769 | 1.1300 |
273
+ | No log | 12.6857 | 444 | 1.2753 | 0.5 | 1.2753 | 1.1293 |
274
+ | No log | 12.7429 | 446 | 1.4069 | 0.4444 | 1.4069 | 1.1861 |
275
+ | No log | 12.8 | 448 | 1.5712 | 0.3741 | 1.5712 | 1.2535 |
276
+ | No log | 12.8571 | 450 | 1.6644 | 0.3309 | 1.6644 | 1.2901 |
277
+ | No log | 12.9143 | 452 | 1.7564 | 0.3309 | 1.7564 | 1.3253 |
278
+ | No log | 12.9714 | 454 | 1.8176 | 0.3309 | 1.8176 | 1.3482 |
279
+ | No log | 13.0286 | 456 | 1.9330 | 0.2878 | 1.9330 | 1.3903 |
280
+ | No log | 13.0857 | 458 | 1.8480 | 0.3043 | 1.8480 | 1.3594 |
281
+ | No log | 13.1429 | 460 | 1.6314 | 0.3459 | 1.6314 | 1.2773 |
282
+ | No log | 13.2 | 462 | 1.5111 | 0.3969 | 1.5111 | 1.2293 |
283
+ | No log | 13.2571 | 464 | 1.3984 | 0.4961 | 1.3984 | 1.1826 |
284
+ | No log | 13.3143 | 466 | 1.3789 | 0.4961 | 1.3789 | 1.1743 |
285
+ | No log | 13.3714 | 468 | 1.4830 | 0.3636 | 1.4830 | 1.2178 |
286
+ | No log | 13.4286 | 470 | 1.6326 | 0.3504 | 1.6326 | 1.2777 |
287
+ | No log | 13.4857 | 472 | 1.7740 | 0.3309 | 1.7740 | 1.3319 |
288
+ | No log | 13.5429 | 474 | 1.7832 | 0.3309 | 1.7832 | 1.3354 |
289
+ | No log | 13.6 | 476 | 1.5766 | 0.3504 | 1.5766 | 1.2556 |
290
+ | No log | 13.6571 | 478 | 1.3575 | 0.4361 | 1.3575 | 1.1651 |
291
+ | No log | 13.7143 | 480 | 1.3417 | 0.4462 | 1.3417 | 1.1583 |
292
+ | No log | 13.7714 | 482 | 1.3660 | 0.4882 | 1.3660 | 1.1688 |
293
+ | No log | 13.8286 | 484 | 1.3767 | 0.5 | 1.3767 | 1.1733 |
294
+ | No log | 13.8857 | 486 | 1.3127 | 0.4640 | 1.3127 | 1.1457 |
295
+ | No log | 13.9429 | 488 | 1.3312 | 0.4806 | 1.3312 | 1.1538 |
296
+ | No log | 14.0 | 490 | 1.3455 | 0.4769 | 1.3455 | 1.1600 |
297
+ | No log | 14.0571 | 492 | 1.3554 | 0.4769 | 1.3554 | 1.1642 |
298
+ | No log | 14.1143 | 494 | 1.3151 | 0.4806 | 1.3151 | 1.1468 |
299
+ | No log | 14.1714 | 496 | 1.2443 | 0.4640 | 1.2443 | 1.1155 |
300
+ | No log | 14.2286 | 498 | 1.2205 | 0.4677 | 1.2205 | 1.1048 |
301
+ | 0.3795 | 14.2857 | 500 | 1.2774 | 0.4640 | 1.2774 | 1.1302 |
302
+ | 0.3795 | 14.3429 | 502 | 1.3602 | 0.4769 | 1.3602 | 1.1663 |
303
+ | 0.3795 | 14.4 | 504 | 1.3068 | 0.4640 | 1.3068 | 1.1432 |
304
+ | 0.3795 | 14.4571 | 506 | 1.2476 | 0.4839 | 1.2476 | 1.1170 |
305
+ | 0.3795 | 14.5143 | 508 | 1.2593 | 0.4960 | 1.2593 | 1.1222 |
306
+ | 0.3795 | 14.5714 | 510 | 1.2930 | 0.4960 | 1.2930 | 1.1371 |
307
+ | 0.3795 | 14.6286 | 512 | 1.2811 | 0.5041 | 1.2811 | 1.1318 |
308
+ | 0.3795 | 14.6857 | 514 | 1.2554 | 0.5041 | 1.2554 | 1.1205 |
309
+ | 0.3795 | 14.7429 | 516 | 1.2677 | 0.5161 | 1.2677 | 1.1259 |
310
+ | 0.3795 | 14.8 | 518 | 1.2936 | 0.5039 | 1.2936 | 1.1374 |
311
+ | 0.3795 | 14.8571 | 520 | 1.3085 | 0.5156 | 1.3085 | 1.1439 |
312
+ | 0.3795 | 14.9143 | 522 | 1.3671 | 0.4923 | 1.3671 | 1.1692 |
313
+ | 0.3795 | 14.9714 | 524 | 1.4218 | 0.4511 | 1.4218 | 1.1924 |
314
+ | 0.3795 | 15.0286 | 526 | 1.4445 | 0.4179 | 1.4445 | 1.2019 |
315
+ | 0.3795 | 15.0857 | 528 | 1.3423 | 0.4923 | 1.3423 | 1.1586 |
316
+ | 0.3795 | 15.1429 | 530 | 1.2695 | 0.5 | 1.2695 | 1.1267 |
317
+ | 0.3795 | 15.2 | 532 | 1.2755 | 0.5 | 1.2755 | 1.1294 |
318
+ | 0.3795 | 15.2571 | 534 | 1.3131 | 0.4715 | 1.3131 | 1.1459 |
319
+ | 0.3795 | 15.3143 | 536 | 1.3246 | 0.4839 | 1.3246 | 1.1509 |
320
+ | 0.3795 | 15.3714 | 538 | 1.3743 | 0.4580 | 1.3743 | 1.1723 |
321
+ | 0.3795 | 15.4286 | 540 | 1.4301 | 0.4328 | 1.4301 | 1.1959 |
322
+ | 0.3795 | 15.4857 | 542 | 1.4823 | 0.3971 | 1.4823 | 1.2175 |
323
+ | 0.3795 | 15.5429 | 544 | 1.4410 | 0.4296 | 1.4410 | 1.2004 |
324
+ | 0.3795 | 15.6 | 546 | 1.3387 | 0.4511 | 1.3387 | 1.1570 |
325
+
326
+
327
+ ### Framework versions
328
+
329
+ - Transformers 4.44.2
330
+ - Pytorch 2.4.0+cu118
331
+ - Datasets 2.21.0
332
+ - Tokenizers 0.19.1
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "aubmindlab/bert-base-arabertv02",
3
+ "architectures": [
4
+ "BertForSequenceClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 768,
11
+ "id2label": {
12
+ "0": "LABEL_0"
13
+ },
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "label2id": {
17
+ "LABEL_0": 0
18
+ },
19
+ "layer_norm_eps": 1e-12,
20
+ "max_position_embeddings": 512,
21
+ "model_type": "bert",
22
+ "num_attention_heads": 12,
23
+ "num_hidden_layers": 12,
24
+ "pad_token_id": 0,
25
+ "position_embedding_type": "absolute",
26
+ "problem_type": "regression",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.44.2",
29
+ "type_vocab_size": 2,
30
+ "use_cache": true,
31
+ "vocab_size": 64000
32
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e6ae4d110139fd346c7a0b50cde674b403a02ad56b7ccd99f0adc9b728a7d66e
3
+ size 540799996
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8c5bac8d0d323bc7ea5b3febd48582748fd095e48577eee860197e377e24e1e5
3
+ size 5304