MayBashendy commited on
Commit
f0d6856
·
verified ·
1 Parent(s): 9310cef

Training in progress, step 500

Browse files
Files changed (4) hide show
  1. README.md +314 -0
  2. config.json +32 -0
  3. model.safetensors +3 -0
  4. training_args.bin +3 -0
README.md ADDED
@@ -0,0 +1,314 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ base_model: aubmindlab/bert-base-arabertv02
4
+ tags:
5
+ - generated_from_trainer
6
+ model-index:
7
+ - name: ArabicNewSplits7_usingWellWrittenEssays_FineTuningAraBERT_run1_AugV5_k18_task1_organization
8
+ results: []
9
+ ---
10
+
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
+
14
+ # ArabicNewSplits7_usingWellWrittenEssays_FineTuningAraBERT_run1_AugV5_k18_task1_organization
15
+
16
+ This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset.
17
+ It achieves the following results on the evaluation set:
18
+ - Loss: 1.8836
19
+ - Qwk: 0.2899
20
+ - Mse: 1.8836
21
+ - Rmse: 1.3724
22
+
23
+ ## Model description
24
+
25
+ More information needed
26
+
27
+ ## Intended uses & limitations
28
+
29
+ More information needed
30
+
31
+ ## Training and evaluation data
32
+
33
+ More information needed
34
+
35
+ ## Training procedure
36
+
37
+ ### Training hyperparameters
38
+
39
+ The following hyperparameters were used during training:
40
+ - learning_rate: 2e-05
41
+ - train_batch_size: 8
42
+ - eval_batch_size: 8
43
+ - seed: 42
44
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
45
+ - lr_scheduler_type: linear
46
+ - num_epochs: 100
47
+
48
+ ### Training results
49
+
50
+ | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse |
51
+ |:-------------:|:------:|:----:|:---------------:|:-------:|:------:|:------:|
52
+ | No log | 0.0253 | 2 | 6.8066 | 0.0176 | 6.8066 | 2.6089 |
53
+ | No log | 0.0506 | 4 | 4.5284 | 0.0684 | 4.5284 | 2.1280 |
54
+ | No log | 0.0759 | 6 | 3.2980 | 0.0656 | 3.2980 | 1.8160 |
55
+ | No log | 0.1013 | 8 | 2.6515 | 0.1507 | 2.6515 | 1.6283 |
56
+ | No log | 0.1266 | 10 | 2.3207 | 0.1493 | 2.3207 | 1.5234 |
57
+ | No log | 0.1519 | 12 | 1.6803 | 0.1754 | 1.6803 | 1.2963 |
58
+ | No log | 0.1772 | 14 | 1.6886 | 0.2037 | 1.6886 | 1.2994 |
59
+ | No log | 0.2025 | 16 | 1.7048 | 0.2037 | 1.7048 | 1.3057 |
60
+ | No log | 0.2278 | 18 | 1.6720 | 0.1509 | 1.6720 | 1.2931 |
61
+ | No log | 0.2532 | 20 | 1.9475 | 0.1062 | 1.9475 | 1.3955 |
62
+ | No log | 0.2785 | 22 | 2.5051 | -0.0476 | 2.5051 | 1.5827 |
63
+ | No log | 0.3038 | 24 | 2.4771 | -0.0476 | 2.4771 | 1.5739 |
64
+ | No log | 0.3291 | 26 | 2.2317 | 0.0 | 2.2317 | 1.4939 |
65
+ | No log | 0.3544 | 28 | 2.1105 | -0.0177 | 2.1105 | 1.4528 |
66
+ | No log | 0.3797 | 30 | 2.0910 | 0.0536 | 2.0910 | 1.4460 |
67
+ | No log | 0.4051 | 32 | 1.8667 | 0.1481 | 1.8667 | 1.3663 |
68
+ | No log | 0.4304 | 34 | 1.7409 | 0.1495 | 1.7409 | 1.3194 |
69
+ | No log | 0.4557 | 36 | 1.6190 | 0.1509 | 1.6190 | 1.2724 |
70
+ | No log | 0.4810 | 38 | 1.5580 | 0.2056 | 1.5580 | 1.2482 |
71
+ | No log | 0.5063 | 40 | 1.6227 | 0.3036 | 1.6227 | 1.2739 |
72
+ | No log | 0.5316 | 42 | 1.7511 | 0.2783 | 1.7511 | 1.3233 |
73
+ | No log | 0.5570 | 44 | 1.8397 | 0.2087 | 1.8397 | 1.3564 |
74
+ | No log | 0.5823 | 46 | 1.7337 | 0.1636 | 1.7337 | 1.3167 |
75
+ | No log | 0.6076 | 48 | 1.5513 | 0.2883 | 1.5513 | 1.2455 |
76
+ | No log | 0.6329 | 50 | 1.4729 | 0.3220 | 1.4729 | 1.2136 |
77
+ | No log | 0.6582 | 52 | 1.5241 | 0.3361 | 1.5241 | 1.2345 |
78
+ | No log | 0.6835 | 54 | 1.5878 | 0.3361 | 1.5878 | 1.2601 |
79
+ | No log | 0.7089 | 56 | 1.6011 | 0.3361 | 1.6011 | 1.2653 |
80
+ | No log | 0.7342 | 58 | 1.6451 | 0.2018 | 1.6451 | 1.2826 |
81
+ | No log | 0.7595 | 60 | 1.6550 | 0.2018 | 1.6550 | 1.2864 |
82
+ | No log | 0.7848 | 62 | 1.5613 | 0.2037 | 1.5613 | 1.2495 |
83
+ | No log | 0.8101 | 64 | 1.4179 | 0.2222 | 1.4179 | 1.1908 |
84
+ | No log | 0.8354 | 66 | 1.3411 | 0.2906 | 1.3411 | 1.1581 |
85
+ | No log | 0.8608 | 68 | 1.3542 | 0.3471 | 1.3542 | 1.1637 |
86
+ | No log | 0.8861 | 70 | 1.2852 | 0.3934 | 1.2852 | 1.1337 |
87
+ | No log | 0.9114 | 72 | 1.4080 | 0.3697 | 1.4080 | 1.1866 |
88
+ | No log | 0.9367 | 74 | 1.9210 | 0.1239 | 1.9210 | 1.3860 |
89
+ | No log | 0.9620 | 76 | 1.9911 | 0.1217 | 1.9911 | 1.4111 |
90
+ | No log | 0.9873 | 78 | 1.6607 | 0.2759 | 1.6607 | 1.2887 |
91
+ | No log | 1.0127 | 80 | 1.5178 | 0.2655 | 1.5178 | 1.2320 |
92
+ | No log | 1.0380 | 82 | 1.4533 | 0.3167 | 1.4533 | 1.2055 |
93
+ | No log | 1.0633 | 84 | 1.4737 | 0.3471 | 1.4737 | 1.2140 |
94
+ | No log | 1.0886 | 86 | 1.5148 | 0.3967 | 1.5148 | 1.2308 |
95
+ | No log | 1.1139 | 88 | 1.5029 | 0.3651 | 1.5029 | 1.2259 |
96
+ | No log | 1.1392 | 90 | 1.4423 | 0.3622 | 1.4423 | 1.2010 |
97
+ | No log | 1.1646 | 92 | 1.3541 | 0.4127 | 1.3541 | 1.1636 |
98
+ | No log | 1.1899 | 94 | 1.2942 | 0.5231 | 1.2942 | 1.1376 |
99
+ | No log | 1.2152 | 96 | 1.3334 | 0.4844 | 1.3334 | 1.1547 |
100
+ | No log | 1.2405 | 98 | 1.4526 | 0.3871 | 1.4526 | 1.2052 |
101
+ | No log | 1.2658 | 100 | 1.7531 | 0.2677 | 1.7531 | 1.3241 |
102
+ | No log | 1.2911 | 102 | 1.8962 | 0.1789 | 1.8962 | 1.3770 |
103
+ | No log | 1.3165 | 104 | 1.8291 | 0.2381 | 1.8291 | 1.3524 |
104
+ | No log | 1.3418 | 106 | 1.6287 | 0.2689 | 1.6287 | 1.2762 |
105
+ | No log | 1.3671 | 108 | 1.5409 | 0.2906 | 1.5409 | 1.2413 |
106
+ | No log | 1.3924 | 110 | 1.6318 | 0.1930 | 1.6318 | 1.2774 |
107
+ | No log | 1.4177 | 112 | 1.6797 | 0.2261 | 1.6797 | 1.2960 |
108
+ | No log | 1.4430 | 114 | 1.6948 | 0.2087 | 1.6948 | 1.3019 |
109
+ | No log | 1.4684 | 116 | 1.6599 | 0.1947 | 1.6599 | 1.2884 |
110
+ | No log | 1.4937 | 118 | 1.5816 | 0.2301 | 1.5816 | 1.2576 |
111
+ | No log | 1.5190 | 120 | 1.5087 | 0.2727 | 1.5087 | 1.2283 |
112
+ | No log | 1.5443 | 122 | 1.4605 | 0.3220 | 1.4605 | 1.2085 |
113
+ | No log | 1.5696 | 124 | 1.4770 | 0.4553 | 1.4770 | 1.2153 |
114
+ | No log | 1.5949 | 126 | 1.5263 | 0.4394 | 1.5263 | 1.2354 |
115
+ | No log | 1.6203 | 128 | 1.5963 | 0.3881 | 1.5963 | 1.2634 |
116
+ | No log | 1.6456 | 130 | 1.6214 | 0.3609 | 1.6214 | 1.2733 |
117
+ | No log | 1.6709 | 132 | 1.6763 | 0.3333 | 1.6763 | 1.2947 |
118
+ | No log | 1.6962 | 134 | 1.6744 | 0.3333 | 1.6744 | 1.2940 |
119
+ | No log | 1.7215 | 136 | 1.7176 | 0.3134 | 1.7176 | 1.3106 |
120
+ | No log | 1.7468 | 138 | 1.7262 | 0.2519 | 1.7262 | 1.3139 |
121
+ | No log | 1.7722 | 140 | 1.7706 | 0.2647 | 1.7706 | 1.3307 |
122
+ | No log | 1.7975 | 142 | 1.9212 | 0.2302 | 1.9212 | 1.3861 |
123
+ | No log | 1.8228 | 144 | 1.9697 | 0.2464 | 1.9697 | 1.4035 |
124
+ | No log | 1.8481 | 146 | 2.0340 | 0.2190 | 2.0340 | 1.4262 |
125
+ | No log | 1.8734 | 148 | 2.0564 | 0.2128 | 2.0564 | 1.4340 |
126
+ | No log | 1.8987 | 150 | 1.9239 | 0.2254 | 1.9239 | 1.3870 |
127
+ | No log | 1.9241 | 152 | 1.7151 | 0.3333 | 1.7151 | 1.3096 |
128
+ | No log | 1.9494 | 154 | 1.6723 | 0.2880 | 1.6723 | 1.2932 |
129
+ | No log | 1.9747 | 156 | 1.7430 | 0.2595 | 1.7430 | 1.3202 |
130
+ | No log | 2.0 | 158 | 1.8123 | 0.2239 | 1.8123 | 1.3462 |
131
+ | No log | 2.0253 | 160 | 1.8937 | 0.2256 | 1.8937 | 1.3761 |
132
+ | No log | 2.0506 | 162 | 1.8879 | 0.2090 | 1.8879 | 1.3740 |
133
+ | No log | 2.0759 | 164 | 1.8060 | 0.2074 | 1.8060 | 1.3439 |
134
+ | No log | 2.1013 | 166 | 1.5730 | 0.3134 | 1.5730 | 1.2542 |
135
+ | No log | 2.1266 | 168 | 1.4554 | 0.5113 | 1.4554 | 1.2064 |
136
+ | No log | 2.1519 | 170 | 1.4653 | 0.4593 | 1.4653 | 1.2105 |
137
+ | No log | 2.1772 | 172 | 1.4535 | 0.4806 | 1.4535 | 1.2056 |
138
+ | No log | 2.2025 | 174 | 1.4158 | 0.4762 | 1.4158 | 1.1899 |
139
+ | No log | 2.2278 | 176 | 1.4386 | 0.4500 | 1.4386 | 1.1994 |
140
+ | No log | 2.2532 | 178 | 1.5155 | 0.3793 | 1.5155 | 1.2310 |
141
+ | No log | 2.2785 | 180 | 1.5794 | 0.4 | 1.5794 | 1.2567 |
142
+ | No log | 2.3038 | 182 | 1.5759 | 0.3717 | 1.5759 | 1.2553 |
143
+ | No log | 2.3291 | 184 | 1.4865 | 0.4237 | 1.4865 | 1.2192 |
144
+ | No log | 2.3544 | 186 | 1.4267 | 0.4538 | 1.4267 | 1.1944 |
145
+ | No log | 2.3797 | 188 | 1.4268 | 0.4793 | 1.4268 | 1.1945 |
146
+ | No log | 2.4051 | 190 | 1.4894 | 0.4320 | 1.4894 | 1.2204 |
147
+ | No log | 2.4304 | 192 | 1.5870 | 0.4154 | 1.5870 | 1.2598 |
148
+ | No log | 2.4557 | 194 | 1.5820 | 0.4427 | 1.5820 | 1.2578 |
149
+ | No log | 2.4810 | 196 | 1.4770 | 0.4286 | 1.4770 | 1.2153 |
150
+ | No log | 2.5063 | 198 | 1.5029 | 0.4496 | 1.5029 | 1.2259 |
151
+ | No log | 2.5316 | 200 | 1.6076 | 0.4122 | 1.6076 | 1.2679 |
152
+ | No log | 2.5570 | 202 | 1.7413 | 0.3556 | 1.7413 | 1.3196 |
153
+ | No log | 2.5823 | 204 | 1.7301 | 0.3182 | 1.7301 | 1.3153 |
154
+ | No log | 2.6076 | 206 | 1.6507 | 0.3333 | 1.6507 | 1.2848 |
155
+ | No log | 2.6329 | 208 | 1.7113 | 0.3385 | 1.7113 | 1.3082 |
156
+ | No log | 2.6582 | 210 | 1.8221 | 0.2519 | 1.8221 | 1.3499 |
157
+ | No log | 2.6835 | 212 | 1.7995 | 0.2687 | 1.7995 | 1.3415 |
158
+ | No log | 2.7089 | 214 | 1.7619 | 0.2815 | 1.7619 | 1.3274 |
159
+ | No log | 2.7342 | 216 | 1.6444 | 0.3125 | 1.6444 | 1.2823 |
160
+ | No log | 2.7595 | 218 | 1.5798 | 0.3175 | 1.5798 | 1.2569 |
161
+ | No log | 2.7848 | 220 | 1.6080 | 0.3016 | 1.6080 | 1.2681 |
162
+ | No log | 2.8101 | 222 | 1.7000 | 0.2923 | 1.7000 | 1.3038 |
163
+ | No log | 2.8354 | 224 | 1.7632 | 0.3529 | 1.7632 | 1.3279 |
164
+ | No log | 2.8608 | 226 | 1.7893 | 0.3066 | 1.7893 | 1.3377 |
165
+ | No log | 2.8861 | 228 | 1.7913 | 0.2941 | 1.7913 | 1.3384 |
166
+ | No log | 2.9114 | 230 | 1.7820 | 0.3286 | 1.7820 | 1.3349 |
167
+ | No log | 2.9367 | 232 | 1.6614 | 0.3942 | 1.6614 | 1.2889 |
168
+ | No log | 2.9620 | 234 | 1.5742 | 0.4179 | 1.5742 | 1.2547 |
169
+ | No log | 2.9873 | 236 | 1.5867 | 0.4179 | 1.5867 | 1.2597 |
170
+ | No log | 3.0127 | 238 | 1.7171 | 0.3857 | 1.7171 | 1.3104 |
171
+ | No log | 3.0380 | 240 | 1.8519 | 0.3546 | 1.8519 | 1.3608 |
172
+ | No log | 3.0633 | 242 | 1.8628 | 0.3165 | 1.8628 | 1.3649 |
173
+ | No log | 3.0886 | 244 | 1.7366 | 0.2326 | 1.7366 | 1.3178 |
174
+ | No log | 3.1139 | 246 | 1.7184 | 0.3008 | 1.7184 | 1.3109 |
175
+ | No log | 3.1392 | 248 | 1.7253 | 0.3768 | 1.7253 | 1.3135 |
176
+ | No log | 3.1646 | 250 | 1.6977 | 0.3913 | 1.6977 | 1.3029 |
177
+ | No log | 3.1899 | 252 | 1.6809 | 0.3824 | 1.6809 | 1.2965 |
178
+ | No log | 3.2152 | 254 | 1.7551 | 0.3529 | 1.7551 | 1.3248 |
179
+ | No log | 3.2405 | 256 | 1.9569 | 0.2394 | 1.9569 | 1.3989 |
180
+ | No log | 3.2658 | 258 | 2.1674 | 0.2222 | 2.1674 | 1.4722 |
181
+ | No log | 3.2911 | 260 | 2.0420 | 0.2394 | 2.0420 | 1.4290 |
182
+ | No log | 3.3165 | 262 | 1.7803 | 0.2774 | 1.7803 | 1.3343 |
183
+ | No log | 3.3418 | 264 | 1.5044 | 0.4463 | 1.5044 | 1.2265 |
184
+ | No log | 3.3671 | 266 | 1.4425 | 0.2407 | 1.4425 | 1.2010 |
185
+ | No log | 3.3924 | 268 | 1.4388 | 0.2883 | 1.4388 | 1.1995 |
186
+ | No log | 3.4177 | 270 | 1.3858 | 0.375 | 1.3858 | 1.1772 |
187
+ | No log | 3.4430 | 272 | 1.4124 | 0.3968 | 1.4124 | 1.1885 |
188
+ | No log | 3.4684 | 274 | 1.6708 | 0.3768 | 1.6708 | 1.2926 |
189
+ | No log | 3.4937 | 276 | 1.8234 | 0.2899 | 1.8234 | 1.3503 |
190
+ | No log | 3.5190 | 278 | 1.7877 | 0.3165 | 1.7877 | 1.3371 |
191
+ | No log | 3.5443 | 280 | 1.7491 | 0.3429 | 1.7491 | 1.3226 |
192
+ | No log | 3.5696 | 282 | 1.6042 | 0.3796 | 1.6042 | 1.2666 |
193
+ | No log | 3.5949 | 284 | 1.6186 | 0.3796 | 1.6186 | 1.2722 |
194
+ | No log | 3.6203 | 286 | 1.6414 | 0.3676 | 1.6414 | 1.2812 |
195
+ | No log | 3.6456 | 288 | 1.6816 | 0.3676 | 1.6816 | 1.2968 |
196
+ | No log | 3.6709 | 290 | 1.6748 | 0.3676 | 1.6748 | 1.2941 |
197
+ | No log | 3.6962 | 292 | 1.6729 | 0.3556 | 1.6729 | 1.2934 |
198
+ | No log | 3.7215 | 294 | 1.6845 | 0.3556 | 1.6845 | 1.2979 |
199
+ | No log | 3.7468 | 296 | 1.8197 | 0.3165 | 1.8197 | 1.3490 |
200
+ | No log | 3.7722 | 298 | 1.8834 | 0.2429 | 1.8834 | 1.3724 |
201
+ | No log | 3.7975 | 300 | 1.8293 | 0.3404 | 1.8293 | 1.3525 |
202
+ | No log | 3.8228 | 302 | 1.7582 | 0.3741 | 1.7582 | 1.3260 |
203
+ | No log | 3.8481 | 304 | 1.6086 | 0.3971 | 1.6086 | 1.2683 |
204
+ | No log | 3.8734 | 306 | 1.4354 | 0.4545 | 1.4354 | 1.1981 |
205
+ | No log | 3.8987 | 308 | 1.4460 | 0.4427 | 1.4460 | 1.2025 |
206
+ | No log | 3.9241 | 310 | 1.5728 | 0.3538 | 1.5728 | 1.2541 |
207
+ | No log | 3.9494 | 312 | 1.7263 | 0.3053 | 1.7263 | 1.3139 |
208
+ | No log | 3.9747 | 314 | 1.8156 | 0.2754 | 1.8156 | 1.3474 |
209
+ | No log | 4.0 | 316 | 1.8599 | 0.3066 | 1.8599 | 1.3638 |
210
+ | No log | 4.0253 | 318 | 1.7129 | 0.3333 | 1.7129 | 1.3088 |
211
+ | No log | 4.0506 | 320 | 1.6528 | 0.3077 | 1.6528 | 1.2856 |
212
+ | No log | 4.0759 | 322 | 1.6735 | 0.3077 | 1.6735 | 1.2936 |
213
+ | No log | 4.1013 | 324 | 1.8390 | 0.2899 | 1.8390 | 1.3561 |
214
+ | No log | 4.1266 | 326 | 2.0102 | 0.1806 | 2.0102 | 1.4178 |
215
+ | No log | 4.1519 | 328 | 1.9633 | 0.2411 | 1.9633 | 1.4012 |
216
+ | No log | 4.1772 | 330 | 1.7596 | 0.3111 | 1.7596 | 1.3265 |
217
+ | No log | 4.2025 | 332 | 1.6076 | 0.2791 | 1.6076 | 1.2679 |
218
+ | No log | 4.2278 | 334 | 1.5100 | 0.3967 | 1.5100 | 1.2288 |
219
+ | No log | 4.2532 | 336 | 1.4699 | 0.4516 | 1.4699 | 1.2124 |
220
+ | No log | 4.2785 | 338 | 1.4635 | 0.48 | 1.4635 | 1.2098 |
221
+ | No log | 4.3038 | 340 | 1.5397 | 0.4531 | 1.5397 | 1.2408 |
222
+ | No log | 4.3291 | 342 | 1.6288 | 0.4545 | 1.6288 | 1.2763 |
223
+ | No log | 4.3544 | 344 | 1.7614 | 0.3165 | 1.7614 | 1.3272 |
224
+ | No log | 4.3797 | 346 | 1.8311 | 0.3000 | 1.8311 | 1.3532 |
225
+ | No log | 4.4051 | 348 | 1.8436 | 0.2734 | 1.8436 | 1.3578 |
226
+ | No log | 4.4304 | 350 | 2.0141 | 0.2207 | 2.0141 | 1.4192 |
227
+ | No log | 4.4557 | 352 | 2.2070 | 0.1793 | 2.2070 | 1.4856 |
228
+ | No log | 4.4810 | 354 | 2.1585 | 0.1793 | 2.1585 | 1.4692 |
229
+ | No log | 4.5063 | 356 | 1.8971 | 0.2657 | 1.8971 | 1.3774 |
230
+ | No log | 4.5316 | 358 | 1.6261 | 0.3485 | 1.6261 | 1.2752 |
231
+ | No log | 4.5570 | 360 | 1.6372 | 0.3759 | 1.6372 | 1.2795 |
232
+ | No log | 4.5823 | 362 | 1.8160 | 0.2979 | 1.8160 | 1.3476 |
233
+ | No log | 4.6076 | 364 | 1.9260 | 0.2657 | 1.9260 | 1.3878 |
234
+ | No log | 4.6329 | 366 | 1.8027 | 0.2636 | 1.8027 | 1.3427 |
235
+ | No log | 4.6582 | 368 | 1.6940 | 0.2439 | 1.6940 | 1.3015 |
236
+ | No log | 4.6835 | 370 | 1.5578 | 0.3281 | 1.5578 | 1.2481 |
237
+ | No log | 4.7089 | 372 | 1.5038 | 0.3796 | 1.5038 | 1.2263 |
238
+ | No log | 4.7342 | 374 | 1.5196 | 0.3942 | 1.5196 | 1.2327 |
239
+ | No log | 4.7595 | 376 | 1.6108 | 0.3942 | 1.6108 | 1.2692 |
240
+ | No log | 4.7848 | 378 | 1.8024 | 0.3741 | 1.8024 | 1.3425 |
241
+ | No log | 4.8101 | 380 | 2.0794 | 0.2432 | 2.0794 | 1.4420 |
242
+ | No log | 4.8354 | 382 | 2.1776 | 0.2000 | 2.1776 | 1.4757 |
243
+ | No log | 4.8608 | 384 | 2.2219 | 0.1622 | 2.2219 | 1.4906 |
244
+ | No log | 4.8861 | 386 | 2.0966 | 0.2207 | 2.0966 | 1.4480 |
245
+ | No log | 4.9114 | 388 | 1.8695 | 0.2628 | 1.8695 | 1.3673 |
246
+ | No log | 4.9367 | 390 | 1.6653 | 0.3817 | 1.6653 | 1.2905 |
247
+ | No log | 4.9620 | 392 | 1.6430 | 0.4091 | 1.6429 | 1.2818 |
248
+ | No log | 4.9873 | 394 | 1.7497 | 0.3478 | 1.7497 | 1.3228 |
249
+ | No log | 5.0127 | 396 | 1.8984 | 0.2817 | 1.8984 | 1.3778 |
250
+ | No log | 5.0380 | 398 | 1.9788 | 0.2238 | 1.9788 | 1.4067 |
251
+ | No log | 5.0633 | 400 | 1.9116 | 0.2500 | 1.9116 | 1.3826 |
252
+ | No log | 5.0886 | 402 | 1.8144 | 0.2500 | 1.8144 | 1.3470 |
253
+ | No log | 5.1139 | 404 | 1.7980 | 0.2378 | 1.7980 | 1.3409 |
254
+ | No log | 5.1392 | 406 | 1.7586 | 0.2714 | 1.7586 | 1.3261 |
255
+ | No log | 5.1646 | 408 | 1.6805 | 0.2336 | 1.6805 | 1.2963 |
256
+ | No log | 5.1899 | 410 | 1.5989 | 0.3333 | 1.5989 | 1.2645 |
257
+ | No log | 5.2152 | 412 | 1.5868 | 0.3571 | 1.5868 | 1.2597 |
258
+ | No log | 5.2405 | 414 | 1.5098 | 0.4173 | 1.5098 | 1.2287 |
259
+ | No log | 5.2658 | 416 | 1.3855 | 0.4925 | 1.3855 | 1.1771 |
260
+ | No log | 5.2911 | 418 | 1.3263 | 0.4769 | 1.3263 | 1.1516 |
261
+ | No log | 5.3165 | 420 | 1.3501 | 0.4925 | 1.3501 | 1.1620 |
262
+ | No log | 5.3418 | 422 | 1.3689 | 0.4925 | 1.3689 | 1.1700 |
263
+ | No log | 5.3671 | 424 | 1.3855 | 0.4925 | 1.3855 | 1.1771 |
264
+ | No log | 5.3924 | 426 | 1.3691 | 0.4925 | 1.3691 | 1.1701 |
265
+ | No log | 5.4177 | 428 | 1.4196 | 0.4925 | 1.4196 | 1.1915 |
266
+ | No log | 5.4430 | 430 | 1.3375 | 0.5038 | 1.3375 | 1.1565 |
267
+ | No log | 5.4684 | 432 | 1.3763 | 0.4580 | 1.3763 | 1.1732 |
268
+ | No log | 5.4937 | 434 | 1.4562 | 0.4427 | 1.4562 | 1.2067 |
269
+ | No log | 5.5190 | 436 | 1.6298 | 0.3088 | 1.6298 | 1.2767 |
270
+ | No log | 5.5443 | 438 | 1.6497 | 0.3088 | 1.6497 | 1.2844 |
271
+ | No log | 5.5696 | 440 | 1.5685 | 0.3582 | 1.5685 | 1.2524 |
272
+ | No log | 5.5949 | 442 | 1.4751 | 0.4252 | 1.4751 | 1.2145 |
273
+ | No log | 5.6203 | 444 | 1.4460 | 0.4409 | 1.4460 | 1.2025 |
274
+ | No log | 5.6456 | 446 | 1.5631 | 0.3459 | 1.5631 | 1.2503 |
275
+ | No log | 5.6709 | 448 | 1.6500 | 0.3088 | 1.6500 | 1.2845 |
276
+ | No log | 5.6962 | 450 | 1.7025 | 0.2774 | 1.7025 | 1.3048 |
277
+ | No log | 5.7215 | 452 | 1.6438 | 0.2647 | 1.6438 | 1.2821 |
278
+ | No log | 5.7468 | 454 | 1.6777 | 0.2647 | 1.6777 | 1.2953 |
279
+ | No log | 5.7722 | 456 | 1.7785 | 0.2774 | 1.7785 | 1.3336 |
280
+ | No log | 5.7975 | 458 | 1.8499 | 0.2958 | 1.8499 | 1.3601 |
281
+ | No log | 5.8228 | 460 | 1.8353 | 0.3217 | 1.8353 | 1.3547 |
282
+ | No log | 5.8481 | 462 | 1.7544 | 0.3043 | 1.7544 | 1.3245 |
283
+ | No log | 5.8734 | 464 | 1.7829 | 0.2647 | 1.7829 | 1.3353 |
284
+ | No log | 5.8987 | 466 | 1.8690 | 0.2571 | 1.8690 | 1.3671 |
285
+ | No log | 5.9241 | 468 | 1.8518 | 0.2734 | 1.8518 | 1.3608 |
286
+ | No log | 5.9494 | 470 | 1.8033 | 0.2734 | 1.8033 | 1.3429 |
287
+ | No log | 5.9747 | 472 | 1.8139 | 0.2609 | 1.8139 | 1.3468 |
288
+ | No log | 6.0 | 474 | 1.7315 | 0.2370 | 1.7315 | 1.3159 |
289
+ | No log | 6.0253 | 476 | 1.7216 | 0.2647 | 1.7216 | 1.3121 |
290
+ | No log | 6.0506 | 478 | 1.6623 | 0.3008 | 1.6623 | 1.2893 |
291
+ | No log | 6.0759 | 480 | 1.6405 | 0.3008 | 1.6405 | 1.2808 |
292
+ | No log | 6.1013 | 482 | 1.5746 | 0.3008 | 1.5746 | 1.2548 |
293
+ | No log | 6.1266 | 484 | 1.6015 | 0.3008 | 1.6015 | 1.2655 |
294
+ | No log | 6.1519 | 486 | 1.7351 | 0.2920 | 1.7351 | 1.3172 |
295
+ | No log | 6.1772 | 488 | 1.9598 | 0.2571 | 1.9598 | 1.3999 |
296
+ | No log | 6.2025 | 490 | 2.0006 | 0.2553 | 2.0006 | 1.4144 |
297
+ | No log | 6.2278 | 492 | 1.8646 | 0.2734 | 1.8646 | 1.3655 |
298
+ | No log | 6.2532 | 494 | 1.6631 | 0.3188 | 1.6631 | 1.2896 |
299
+ | No log | 6.2785 | 496 | 1.5371 | 0.3650 | 1.5371 | 1.2398 |
300
+ | No log | 6.3038 | 498 | 1.4493 | 0.4122 | 1.4493 | 1.2039 |
301
+ | 0.4591 | 6.3291 | 500 | 1.4752 | 0.4122 | 1.4752 | 1.2146 |
302
+ | 0.4591 | 6.3544 | 502 | 1.6036 | 0.3382 | 1.6036 | 1.2663 |
303
+ | 0.4591 | 6.3797 | 504 | 1.7284 | 0.2774 | 1.7284 | 1.3147 |
304
+ | 0.4591 | 6.4051 | 506 | 1.9914 | 0.2553 | 1.9914 | 1.4112 |
305
+ | 0.4591 | 6.4304 | 508 | 2.0511 | 0.2553 | 2.0511 | 1.4322 |
306
+ | 0.4591 | 6.4557 | 510 | 1.8836 | 0.2899 | 1.8836 | 1.3724 |
307
+
308
+
309
+ ### Framework versions
310
+
311
+ - Transformers 4.44.2
312
+ - Pytorch 2.4.0+cu118
313
+ - Datasets 2.21.0
314
+ - Tokenizers 0.19.1
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "aubmindlab/bert-base-arabertv02",
3
+ "architectures": [
4
+ "BertForSequenceClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 768,
11
+ "id2label": {
12
+ "0": "LABEL_0"
13
+ },
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "label2id": {
17
+ "LABEL_0": 0
18
+ },
19
+ "layer_norm_eps": 1e-12,
20
+ "max_position_embeddings": 512,
21
+ "model_type": "bert",
22
+ "num_attention_heads": 12,
23
+ "num_hidden_layers": 12,
24
+ "pad_token_id": 0,
25
+ "position_embedding_type": "absolute",
26
+ "problem_type": "regression",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.44.2",
29
+ "type_vocab_size": 2,
30
+ "use_cache": true,
31
+ "vocab_size": 64000
32
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1f05586269b9d01436659df432b8d93ba26236789a2feb2da988aa2fd05ffede
3
+ size 540799996
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3ed3357e3855dc8490bc06f09175dea2957810c1288b21b1fe4cb4a8d49719b2
3
+ size 5304