MayBashendy commited on
Commit
a38b0d3
·
verified ·
1 Parent(s): 8c2434b

Training in progress, step 500

Browse files
Files changed (4) hide show
  1. README.md +375 -0
  2. config.json +32 -0
  3. model.safetensors +3 -0
  4. training_args.bin +3 -0
README.md ADDED
@@ -0,0 +1,375 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ base_model: aubmindlab/bert-base-arabertv02
4
+ tags:
5
+ - generated_from_trainer
6
+ model-index:
7
+ - name: ArabicNewSplits7_OSS_usingWellWrittenEssays_FineTuningAraBERT_run2_AugV5_k8_task1_organization
8
+ results: []
9
+ ---
10
+
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
+
14
+ # ArabicNewSplits7_OSS_usingWellWrittenEssays_FineTuningAraBERT_run2_AugV5_k8_task1_organization
15
+
16
+ This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset.
17
+ It achieves the following results on the evaluation set:
18
+ - Loss: 0.7813
19
+ - Qwk: 0.6667
20
+ - Mse: 0.7813
21
+ - Rmse: 0.8839
22
+
23
+ ## Model description
24
+
25
+ More information needed
26
+
27
+ ## Intended uses & limitations
28
+
29
+ More information needed
30
+
31
+ ## Training and evaluation data
32
+
33
+ More information needed
34
+
35
+ ## Training procedure
36
+
37
+ ### Training hyperparameters
38
+
39
+ The following hyperparameters were used during training:
40
+ - learning_rate: 2e-05
41
+ - train_batch_size: 8
42
+ - eval_batch_size: 8
43
+ - seed: 42
44
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
45
+ - lr_scheduler_type: linear
46
+ - num_epochs: 100
47
+
48
+ ### Training results
49
+
50
+ | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse |
51
+ |:-------------:|:-------:|:----:|:---------------:|:------:|:------:|:------:|
52
+ | No log | 0.0333 | 2 | 6.9082 | 0.0242 | 6.9082 | 2.6283 |
53
+ | No log | 0.0667 | 4 | 5.8305 | 0.0068 | 5.8305 | 2.4146 |
54
+ | No log | 0.1 | 6 | 3.6150 | 0.0847 | 3.6150 | 1.9013 |
55
+ | No log | 0.1333 | 8 | 2.6289 | 0.0132 | 2.6289 | 1.6214 |
56
+ | No log | 0.1667 | 10 | 2.1907 | 0.1231 | 2.1907 | 1.4801 |
57
+ | No log | 0.2 | 12 | 1.7684 | 0.1538 | 1.7684 | 1.3298 |
58
+ | No log | 0.2333 | 14 | 1.7728 | 0.0784 | 1.7728 | 1.3315 |
59
+ | No log | 0.2667 | 16 | 1.7705 | 0.0784 | 1.7705 | 1.3306 |
60
+ | No log | 0.3 | 18 | 1.7970 | 0.1333 | 1.7970 | 1.3405 |
61
+ | No log | 0.3333 | 20 | 1.6964 | 0.2385 | 1.6964 | 1.3025 |
62
+ | No log | 0.3667 | 22 | 1.8244 | 0.3548 | 1.8244 | 1.3507 |
63
+ | No log | 0.4 | 24 | 1.8346 | 0.3538 | 1.8346 | 1.3545 |
64
+ | No log | 0.4333 | 26 | 1.6991 | 0.3651 | 1.6991 | 1.3035 |
65
+ | No log | 0.4667 | 28 | 1.4789 | 0.3621 | 1.4789 | 1.2161 |
66
+ | No log | 0.5 | 30 | 1.6239 | 0.2364 | 1.6239 | 1.2743 |
67
+ | No log | 0.5333 | 32 | 1.8973 | 0.1607 | 1.8973 | 1.3774 |
68
+ | No log | 0.5667 | 34 | 1.9001 | 0.1391 | 1.9001 | 1.3784 |
69
+ | No log | 0.6 | 36 | 1.6276 | 0.2000 | 1.6276 | 1.2758 |
70
+ | No log | 0.6333 | 38 | 1.6056 | 0.1786 | 1.6056 | 1.2671 |
71
+ | No log | 0.6667 | 40 | 1.3098 | 0.3826 | 1.3098 | 1.1445 |
72
+ | No log | 0.7 | 42 | 1.1345 | 0.4655 | 1.1345 | 1.0651 |
73
+ | No log | 0.7333 | 44 | 1.0921 | 0.5082 | 1.0921 | 1.0451 |
74
+ | No log | 0.7667 | 46 | 1.1408 | 0.5161 | 1.1408 | 1.0681 |
75
+ | No log | 0.8 | 48 | 1.1707 | 0.528 | 1.1707 | 1.0820 |
76
+ | No log | 0.8333 | 50 | 1.1256 | 0.5161 | 1.1256 | 1.0610 |
77
+ | No log | 0.8667 | 52 | 1.0411 | 0.5042 | 1.0411 | 1.0203 |
78
+ | No log | 0.9 | 54 | 1.0423 | 0.4957 | 1.0423 | 1.0209 |
79
+ | No log | 0.9333 | 56 | 1.0956 | 0.4386 | 1.0956 | 1.0467 |
80
+ | No log | 0.9667 | 58 | 1.1691 | 0.3898 | 1.1691 | 1.0813 |
81
+ | No log | 1.0 | 60 | 1.3075 | 0.4138 | 1.3075 | 1.1434 |
82
+ | No log | 1.0333 | 62 | 1.4266 | 0.4 | 1.4266 | 1.1944 |
83
+ | No log | 1.0667 | 64 | 1.2362 | 0.5077 | 1.2362 | 1.1119 |
84
+ | No log | 1.1 | 66 | 1.1848 | 0.5303 | 1.1848 | 1.0885 |
85
+ | No log | 1.1333 | 68 | 1.1592 | 0.5672 | 1.1592 | 1.0767 |
86
+ | No log | 1.1667 | 70 | 1.1053 | 0.5865 | 1.1053 | 1.0513 |
87
+ | No log | 1.2 | 72 | 1.0459 | 0.5821 | 1.0459 | 1.0227 |
88
+ | No log | 1.2333 | 74 | 1.0181 | 0.6222 | 1.0181 | 1.0090 |
89
+ | No log | 1.2667 | 76 | 1.0119 | 0.5802 | 1.0119 | 1.0059 |
90
+ | No log | 1.3 | 78 | 1.0927 | 0.5672 | 1.0927 | 1.0453 |
91
+ | No log | 1.3333 | 80 | 1.2660 | 0.5255 | 1.2660 | 1.1252 |
92
+ | No log | 1.3667 | 82 | 1.2875 | 0.5039 | 1.2875 | 1.1347 |
93
+ | No log | 1.4 | 84 | 1.2503 | 0.5312 | 1.2503 | 1.1181 |
94
+ | No log | 1.4333 | 86 | 1.1982 | 0.5039 | 1.1982 | 1.0946 |
95
+ | No log | 1.4667 | 88 | 1.2058 | 0.5075 | 1.2058 | 1.0981 |
96
+ | No log | 1.5 | 90 | 1.4050 | 0.4626 | 1.4050 | 1.1853 |
97
+ | No log | 1.5333 | 92 | 1.2505 | 0.5241 | 1.2505 | 1.1183 |
98
+ | No log | 1.5667 | 94 | 0.9744 | 0.6466 | 0.9744 | 0.9871 |
99
+ | No log | 1.6 | 96 | 0.8545 | 0.6370 | 0.8545 | 0.9244 |
100
+ | No log | 1.6333 | 98 | 0.7992 | 0.6370 | 0.7992 | 0.8940 |
101
+ | No log | 1.6667 | 100 | 0.7842 | 0.6993 | 0.7842 | 0.8855 |
102
+ | No log | 1.7 | 102 | 0.9521 | 0.6800 | 0.9521 | 0.9758 |
103
+ | No log | 1.7333 | 104 | 0.9643 | 0.7013 | 0.9643 | 0.9820 |
104
+ | No log | 1.7667 | 106 | 0.8436 | 0.7027 | 0.8436 | 0.9185 |
105
+ | No log | 1.8 | 108 | 0.8197 | 0.6806 | 0.8197 | 0.9054 |
106
+ | No log | 1.8333 | 110 | 0.8283 | 0.6897 | 0.8283 | 0.9101 |
107
+ | No log | 1.8667 | 112 | 0.9247 | 0.6759 | 0.9247 | 0.9616 |
108
+ | No log | 1.9 | 114 | 0.9953 | 0.6757 | 0.9953 | 0.9977 |
109
+ | No log | 1.9333 | 116 | 1.0224 | 0.6759 | 1.0224 | 1.0111 |
110
+ | No log | 1.9667 | 118 | 1.1153 | 0.6133 | 1.1153 | 1.0561 |
111
+ | No log | 2.0 | 120 | 1.0409 | 0.6434 | 1.0409 | 1.0203 |
112
+ | No log | 2.0333 | 122 | 0.9511 | 0.7 | 0.9511 | 0.9752 |
113
+ | No log | 2.0667 | 124 | 0.9394 | 0.6809 | 0.9394 | 0.9692 |
114
+ | No log | 2.1 | 126 | 0.9378 | 0.6714 | 0.9378 | 0.9684 |
115
+ | No log | 2.1333 | 128 | 1.0521 | 0.6099 | 1.0521 | 1.0257 |
116
+ | No log | 2.1667 | 130 | 1.1167 | 0.5674 | 1.1167 | 1.0567 |
117
+ | No log | 2.2 | 132 | 1.0027 | 0.6383 | 1.0027 | 1.0013 |
118
+ | No log | 2.2333 | 134 | 0.8545 | 0.6950 | 0.8545 | 0.9244 |
119
+ | No log | 2.2667 | 136 | 0.8840 | 0.6761 | 0.8840 | 0.9402 |
120
+ | No log | 2.3 | 138 | 0.8223 | 0.6853 | 0.8223 | 0.9068 |
121
+ | No log | 2.3333 | 140 | 0.7108 | 0.7273 | 0.7108 | 0.8431 |
122
+ | No log | 2.3667 | 142 | 0.6693 | 0.7092 | 0.6693 | 0.8181 |
123
+ | No log | 2.4 | 144 | 0.6602 | 0.7733 | 0.6602 | 0.8126 |
124
+ | No log | 2.4333 | 146 | 0.7146 | 0.7237 | 0.7146 | 0.8453 |
125
+ | No log | 2.4667 | 148 | 0.7748 | 0.7089 | 0.7748 | 0.8802 |
126
+ | No log | 2.5 | 150 | 0.8671 | 0.7117 | 0.8671 | 0.9312 |
127
+ | No log | 2.5333 | 152 | 0.9416 | 0.6867 | 0.9416 | 0.9704 |
128
+ | No log | 2.5667 | 154 | 0.9572 | 0.6867 | 0.9572 | 0.9784 |
129
+ | No log | 2.6 | 156 | 0.8679 | 0.7020 | 0.8679 | 0.9316 |
130
+ | No log | 2.6333 | 158 | 0.7922 | 0.7059 | 0.7922 | 0.8901 |
131
+ | No log | 2.6667 | 160 | 0.7265 | 0.7248 | 0.7265 | 0.8524 |
132
+ | No log | 2.7 | 162 | 0.7741 | 0.7059 | 0.7741 | 0.8798 |
133
+ | No log | 2.7333 | 164 | 0.9196 | 0.7037 | 0.9196 | 0.9589 |
134
+ | No log | 2.7667 | 166 | 0.8762 | 0.7215 | 0.8762 | 0.9361 |
135
+ | No log | 2.8 | 168 | 0.8767 | 0.7317 | 0.8767 | 0.9363 |
136
+ | No log | 2.8333 | 170 | 0.9193 | 0.7079 | 0.9193 | 0.9588 |
137
+ | No log | 2.8667 | 172 | 0.9078 | 0.7312 | 0.9078 | 0.9528 |
138
+ | No log | 2.9 | 174 | 0.7913 | 0.7683 | 0.7913 | 0.8896 |
139
+ | No log | 2.9333 | 176 | 0.7682 | 0.7342 | 0.7682 | 0.8765 |
140
+ | No log | 2.9667 | 178 | 0.8219 | 0.6944 | 0.8219 | 0.9066 |
141
+ | No log | 3.0 | 180 | 0.8606 | 0.6809 | 0.8606 | 0.9277 |
142
+ | No log | 3.0333 | 182 | 0.8344 | 0.6667 | 0.8344 | 0.9134 |
143
+ | No log | 3.0667 | 184 | 0.7993 | 0.6423 | 0.7993 | 0.8941 |
144
+ | No log | 3.1 | 186 | 0.7417 | 0.6897 | 0.7417 | 0.8612 |
145
+ | No log | 3.1333 | 188 | 0.7129 | 0.7059 | 0.7129 | 0.8443 |
146
+ | No log | 3.1667 | 190 | 0.7060 | 0.7342 | 0.7060 | 0.8402 |
147
+ | No log | 3.2 | 192 | 0.7626 | 0.7320 | 0.7626 | 0.8733 |
148
+ | No log | 3.2333 | 194 | 0.8633 | 0.7205 | 0.8633 | 0.9291 |
149
+ | No log | 3.2667 | 196 | 0.7792 | 0.7089 | 0.7792 | 0.8828 |
150
+ | No log | 3.3 | 198 | 0.6919 | 0.7532 | 0.6919 | 0.8318 |
151
+ | No log | 3.3333 | 200 | 0.6636 | 0.7662 | 0.6636 | 0.8146 |
152
+ | No log | 3.3667 | 202 | 0.6649 | 0.7355 | 0.6649 | 0.8154 |
153
+ | No log | 3.4 | 204 | 0.7772 | 0.7362 | 0.7772 | 0.8816 |
154
+ | No log | 3.4333 | 206 | 0.9835 | 0.6463 | 0.9835 | 0.9917 |
155
+ | No log | 3.4667 | 208 | 1.0133 | 0.65 | 1.0133 | 1.0066 |
156
+ | No log | 3.5 | 210 | 0.9249 | 0.6803 | 0.9249 | 0.9617 |
157
+ | No log | 3.5333 | 212 | 0.8361 | 0.6222 | 0.8361 | 0.9144 |
158
+ | No log | 3.5667 | 214 | 0.8428 | 0.6377 | 0.8428 | 0.9180 |
159
+ | No log | 3.6 | 216 | 0.8868 | 0.6324 | 0.8868 | 0.9417 |
160
+ | No log | 3.6333 | 218 | 1.1356 | 0.6358 | 1.1356 | 1.0657 |
161
+ | No log | 3.6667 | 220 | 1.2890 | 0.5677 | 1.2890 | 1.1353 |
162
+ | No log | 3.7 | 222 | 1.1781 | 0.5957 | 1.1781 | 1.0854 |
163
+ | No log | 3.7333 | 224 | 0.9484 | 0.6377 | 0.9484 | 0.9739 |
164
+ | No log | 3.7667 | 226 | 0.7789 | 0.6618 | 0.7789 | 0.8825 |
165
+ | No log | 3.8 | 228 | 0.7257 | 0.7050 | 0.7257 | 0.8519 |
166
+ | No log | 3.8333 | 230 | 0.7810 | 0.7013 | 0.7810 | 0.8837 |
167
+ | No log | 3.8667 | 232 | 0.9693 | 0.7018 | 0.9693 | 0.9845 |
168
+ | No log | 3.9 | 234 | 0.9889 | 0.6824 | 0.9889 | 0.9944 |
169
+ | No log | 3.9333 | 236 | 1.0938 | 0.6404 | 1.0938 | 1.0458 |
170
+ | No log | 3.9667 | 238 | 1.0235 | 0.6784 | 1.0235 | 1.0117 |
171
+ | No log | 4.0 | 240 | 0.9400 | 0.6788 | 0.9400 | 0.9695 |
172
+ | No log | 4.0333 | 242 | 0.8614 | 0.6531 | 0.8614 | 0.9281 |
173
+ | No log | 4.0667 | 244 | 0.8031 | 0.6713 | 0.8031 | 0.8962 |
174
+ | No log | 4.1 | 246 | 0.8048 | 0.6839 | 0.8048 | 0.8971 |
175
+ | No log | 4.1333 | 248 | 0.7479 | 0.6928 | 0.7479 | 0.8648 |
176
+ | No log | 4.1667 | 250 | 0.6926 | 0.7260 | 0.6926 | 0.8322 |
177
+ | No log | 4.2 | 252 | 0.7211 | 0.7067 | 0.7211 | 0.8492 |
178
+ | No log | 4.2333 | 254 | 0.8756 | 0.7368 | 0.8756 | 0.9357 |
179
+ | No log | 4.2667 | 256 | 0.9926 | 0.6936 | 0.9926 | 0.9963 |
180
+ | No log | 4.3 | 258 | 0.9344 | 0.6946 | 0.9344 | 0.9666 |
181
+ | No log | 4.3333 | 260 | 0.8361 | 0.6709 | 0.8361 | 0.9144 |
182
+ | No log | 4.3667 | 262 | 0.8137 | 0.6709 | 0.8137 | 0.9021 |
183
+ | No log | 4.4 | 264 | 0.7727 | 0.6434 | 0.7727 | 0.8790 |
184
+ | No log | 4.4333 | 266 | 0.7803 | 0.6471 | 0.7803 | 0.8834 |
185
+ | No log | 4.4667 | 268 | 0.7909 | 0.6519 | 0.7909 | 0.8893 |
186
+ | No log | 4.5 | 270 | 0.9247 | 0.6338 | 0.9247 | 0.9616 |
187
+ | No log | 4.5333 | 272 | 1.2760 | 0.5989 | 1.2760 | 1.1296 |
188
+ | No log | 4.5667 | 274 | 1.4325 | 0.6196 | 1.4325 | 1.1969 |
189
+ | No log | 4.6 | 276 | 1.2431 | 0.5912 | 1.2431 | 1.1150 |
190
+ | No log | 4.6333 | 278 | 0.9098 | 0.6176 | 0.9098 | 0.9538 |
191
+ | No log | 4.6667 | 280 | 0.7521 | 0.6569 | 0.7521 | 0.8672 |
192
+ | No log | 4.7 | 282 | 0.6890 | 0.7801 | 0.6890 | 0.8300 |
193
+ | No log | 4.7333 | 284 | 0.6991 | 0.7413 | 0.6991 | 0.8361 |
194
+ | No log | 4.7667 | 286 | 0.7906 | 0.6757 | 0.7906 | 0.8892 |
195
+ | No log | 4.8 | 288 | 0.8069 | 0.6755 | 0.8069 | 0.8983 |
196
+ | No log | 4.8333 | 290 | 0.7988 | 0.6620 | 0.7988 | 0.8937 |
197
+ | No log | 4.8667 | 292 | 0.7422 | 0.7246 | 0.7422 | 0.8615 |
198
+ | No log | 4.9 | 294 | 0.7463 | 0.6963 | 0.7463 | 0.8639 |
199
+ | No log | 4.9333 | 296 | 0.7196 | 0.7101 | 0.7196 | 0.8483 |
200
+ | No log | 4.9667 | 298 | 0.8014 | 0.6842 | 0.8014 | 0.8952 |
201
+ | No log | 5.0 | 300 | 0.7948 | 0.6962 | 0.7948 | 0.8915 |
202
+ | No log | 5.0333 | 302 | 0.7340 | 0.7162 | 0.7340 | 0.8567 |
203
+ | No log | 5.0667 | 304 | 0.7366 | 0.7237 | 0.7366 | 0.8583 |
204
+ | No log | 5.1 | 306 | 0.8081 | 0.7284 | 0.8081 | 0.8990 |
205
+ | No log | 5.1333 | 308 | 0.8957 | 0.7143 | 0.8957 | 0.9464 |
206
+ | No log | 5.1667 | 310 | 0.8716 | 0.7284 | 0.8716 | 0.9336 |
207
+ | No log | 5.2 | 312 | 0.7626 | 0.6806 | 0.7626 | 0.8733 |
208
+ | No log | 5.2333 | 314 | 0.7390 | 0.6571 | 0.7390 | 0.8596 |
209
+ | No log | 5.2667 | 316 | 0.7466 | 0.6667 | 0.7466 | 0.8641 |
210
+ | No log | 5.3 | 318 | 0.7945 | 0.6809 | 0.7945 | 0.8913 |
211
+ | No log | 5.3333 | 320 | 0.9202 | 0.6624 | 0.9202 | 0.9593 |
212
+ | No log | 5.3667 | 322 | 0.9892 | 0.6971 | 0.9892 | 0.9946 |
213
+ | No log | 5.4 | 324 | 0.9429 | 0.6625 | 0.9429 | 0.9710 |
214
+ | No log | 5.4333 | 326 | 0.8975 | 0.6497 | 0.8975 | 0.9474 |
215
+ | No log | 5.4667 | 328 | 0.9222 | 0.6497 | 0.9222 | 0.9603 |
216
+ | No log | 5.5 | 330 | 1.0255 | 0.6415 | 1.0255 | 1.0126 |
217
+ | No log | 5.5333 | 332 | 1.2081 | 0.6082 | 1.2081 | 1.0991 |
218
+ | No log | 5.5667 | 334 | 1.2455 | 0.6127 | 1.2455 | 1.1160 |
219
+ | No log | 5.6 | 336 | 1.0979 | 0.6203 | 1.0979 | 1.0478 |
220
+ | No log | 5.6333 | 338 | 0.9072 | 0.6483 | 0.9072 | 0.9525 |
221
+ | No log | 5.6667 | 340 | 0.8263 | 0.6806 | 0.8263 | 0.9090 |
222
+ | No log | 5.7 | 342 | 0.7675 | 0.7123 | 0.7675 | 0.8761 |
223
+ | No log | 5.7333 | 344 | 0.8538 | 0.7027 | 0.8538 | 0.9240 |
224
+ | No log | 5.7667 | 346 | 1.0229 | 0.6415 | 1.0229 | 1.0114 |
225
+ | No log | 5.8 | 348 | 1.0950 | 0.5854 | 1.0950 | 1.0464 |
226
+ | No log | 5.8333 | 350 | 0.9918 | 0.6538 | 0.9918 | 0.9959 |
227
+ | No log | 5.8667 | 352 | 0.8238 | 0.6950 | 0.8238 | 0.9076 |
228
+ | No log | 5.9 | 354 | 0.7030 | 0.7299 | 0.7030 | 0.8385 |
229
+ | No log | 5.9333 | 356 | 0.6756 | 0.7429 | 0.6756 | 0.8219 |
230
+ | No log | 5.9667 | 358 | 0.6776 | 0.7338 | 0.6776 | 0.8232 |
231
+ | No log | 6.0 | 360 | 0.7434 | 0.6912 | 0.7434 | 0.8622 |
232
+ | No log | 6.0333 | 362 | 0.9202 | 0.6712 | 0.9202 | 0.9593 |
233
+ | No log | 6.0667 | 364 | 1.1234 | 0.5960 | 1.1234 | 1.0599 |
234
+ | No log | 6.1 | 366 | 1.1221 | 0.5986 | 1.1221 | 1.0593 |
235
+ | No log | 6.1333 | 368 | 1.0058 | 0.6222 | 1.0058 | 1.0029 |
236
+ | No log | 6.1667 | 370 | 0.9662 | 0.6074 | 0.9662 | 0.9830 |
237
+ | No log | 6.2 | 372 | 0.8687 | 0.6715 | 0.8687 | 0.9320 |
238
+ | No log | 6.2333 | 374 | 0.8134 | 0.6912 | 0.8134 | 0.9019 |
239
+ | No log | 6.2667 | 376 | 0.8418 | 0.6713 | 0.8418 | 0.9175 |
240
+ | No log | 6.3 | 378 | 0.7837 | 0.6944 | 0.7837 | 0.8853 |
241
+ | No log | 6.3333 | 380 | 0.7725 | 0.6944 | 0.7725 | 0.8789 |
242
+ | No log | 6.3667 | 382 | 0.8029 | 0.6944 | 0.8029 | 0.8961 |
243
+ | No log | 6.4 | 384 | 0.7861 | 0.6944 | 0.7861 | 0.8866 |
244
+ | No log | 6.4333 | 386 | 0.7409 | 0.7133 | 0.7409 | 0.8608 |
245
+ | No log | 6.4667 | 388 | 0.6897 | 0.7246 | 0.6897 | 0.8305 |
246
+ | No log | 6.5 | 390 | 0.7000 | 0.6912 | 0.7000 | 0.8367 |
247
+ | No log | 6.5333 | 392 | 0.7943 | 0.6753 | 0.7943 | 0.8912 |
248
+ | No log | 6.5667 | 394 | 0.7491 | 0.6803 | 0.7491 | 0.8655 |
249
+ | No log | 6.6 | 396 | 0.7268 | 0.7007 | 0.7268 | 0.8525 |
250
+ | No log | 6.6333 | 398 | 0.7910 | 0.6800 | 0.7910 | 0.8894 |
251
+ | No log | 6.6667 | 400 | 0.8286 | 0.6710 | 0.8286 | 0.9103 |
252
+ | No log | 6.7 | 402 | 0.7796 | 0.6928 | 0.7796 | 0.8830 |
253
+ | No log | 6.7333 | 404 | 0.7566 | 0.7020 | 0.7566 | 0.8698 |
254
+ | No log | 6.7667 | 406 | 0.7414 | 0.6812 | 0.7414 | 0.8610 |
255
+ | No log | 6.8 | 408 | 0.7777 | 0.6763 | 0.7777 | 0.8819 |
256
+ | No log | 6.8333 | 410 | 0.8883 | 0.6667 | 0.8883 | 0.9425 |
257
+ | No log | 6.8667 | 412 | 0.9977 | 0.6475 | 0.9977 | 0.9988 |
258
+ | No log | 6.9 | 414 | 0.9732 | 0.6475 | 0.9732 | 0.9865 |
259
+ | No log | 6.9333 | 416 | 0.9855 | 0.6479 | 0.9855 | 0.9927 |
260
+ | No log | 6.9667 | 418 | 0.8740 | 0.6479 | 0.8740 | 0.9349 |
261
+ | No log | 7.0 | 420 | 0.7777 | 0.7007 | 0.7777 | 0.8819 |
262
+ | No log | 7.0333 | 422 | 0.7972 | 0.6950 | 0.7972 | 0.8929 |
263
+ | No log | 7.0667 | 424 | 0.9580 | 0.6711 | 0.9580 | 0.9788 |
264
+ | No log | 7.1 | 426 | 1.0961 | 0.6667 | 1.0961 | 1.0469 |
265
+ | No log | 7.1333 | 428 | 1.1822 | 0.6144 | 1.1822 | 1.0873 |
266
+ | No log | 7.1667 | 430 | 1.2135 | 0.5578 | 1.2135 | 1.1016 |
267
+ | No log | 7.2 | 432 | 1.1315 | 0.5735 | 1.1315 | 1.0637 |
268
+ | No log | 7.2333 | 434 | 0.9735 | 0.6212 | 0.9735 | 0.9867 |
269
+ | No log | 7.2667 | 436 | 0.8898 | 0.6767 | 0.8898 | 0.9433 |
270
+ | No log | 7.3 | 438 | 0.8807 | 0.6906 | 0.8807 | 0.9385 |
271
+ | No log | 7.3333 | 440 | 0.9653 | 0.6829 | 0.9653 | 0.9825 |
272
+ | No log | 7.3667 | 442 | 0.9966 | 0.6824 | 0.9966 | 0.9983 |
273
+ | No log | 7.4 | 444 | 0.9265 | 0.6829 | 0.9265 | 0.9626 |
274
+ | No log | 7.4333 | 446 | 0.8115 | 0.7027 | 0.8115 | 0.9008 |
275
+ | No log | 7.4667 | 448 | 0.7751 | 0.6619 | 0.7751 | 0.8804 |
276
+ | No log | 7.5 | 450 | 0.8049 | 0.6617 | 0.8049 | 0.8971 |
277
+ | No log | 7.5333 | 452 | 0.8564 | 0.6617 | 0.8564 | 0.9254 |
278
+ | No log | 7.5667 | 454 | 0.9576 | 0.6370 | 0.9576 | 0.9785 |
279
+ | No log | 7.6 | 456 | 1.1087 | 0.6581 | 1.1087 | 1.0530 |
280
+ | No log | 7.6333 | 458 | 1.1163 | 0.6581 | 1.1163 | 1.0566 |
281
+ | No log | 7.6667 | 460 | 0.9537 | 0.6131 | 0.9537 | 0.9766 |
282
+ | No log | 7.7 | 462 | 0.8175 | 0.6667 | 0.8175 | 0.9042 |
283
+ | No log | 7.7333 | 464 | 0.8131 | 0.6619 | 0.8131 | 0.9017 |
284
+ | No log | 7.7667 | 466 | 0.8602 | 0.7020 | 0.8602 | 0.9275 |
285
+ | No log | 7.8 | 468 | 0.8933 | 0.6667 | 0.8933 | 0.9451 |
286
+ | No log | 7.8333 | 470 | 0.8721 | 0.6716 | 0.8721 | 0.9339 |
287
+ | No log | 7.8667 | 472 | 0.8476 | 0.6767 | 0.8476 | 0.9206 |
288
+ | No log | 7.9 | 474 | 0.8403 | 0.6767 | 0.8403 | 0.9167 |
289
+ | No log | 7.9333 | 476 | 0.8370 | 0.6618 | 0.8370 | 0.9149 |
290
+ | No log | 7.9667 | 478 | 0.8555 | 0.6715 | 0.8555 | 0.9249 |
291
+ | No log | 8.0 | 480 | 0.9345 | 0.6792 | 0.9345 | 0.9667 |
292
+ | No log | 8.0333 | 482 | 0.8897 | 0.6871 | 0.8897 | 0.9432 |
293
+ | No log | 8.0667 | 484 | 0.7431 | 0.7125 | 0.7431 | 0.8620 |
294
+ | No log | 8.1 | 486 | 0.6946 | 0.7133 | 0.6946 | 0.8334 |
295
+ | No log | 8.1333 | 488 | 0.7138 | 0.6901 | 0.7138 | 0.8448 |
296
+ | No log | 8.1667 | 490 | 0.7300 | 0.7034 | 0.7300 | 0.8544 |
297
+ | No log | 8.2 | 492 | 0.7531 | 0.7308 | 0.7531 | 0.8678 |
298
+ | No log | 8.2333 | 494 | 0.8760 | 0.6982 | 0.8760 | 0.9360 |
299
+ | No log | 8.2667 | 496 | 0.9715 | 0.7093 | 0.9715 | 0.9856 |
300
+ | No log | 8.3 | 498 | 0.9052 | 0.6982 | 0.9052 | 0.9514 |
301
+ | 0.4381 | 8.3333 | 500 | 0.8073 | 0.6763 | 0.8073 | 0.8985 |
302
+ | 0.4381 | 8.3667 | 502 | 0.7573 | 0.6866 | 0.7573 | 0.8702 |
303
+ | 0.4381 | 8.4 | 504 | 0.7681 | 0.6963 | 0.7681 | 0.8764 |
304
+ | 0.4381 | 8.4333 | 506 | 0.8212 | 0.6861 | 0.8212 | 0.9062 |
305
+ | 0.4381 | 8.4667 | 508 | 0.8554 | 0.6667 | 0.8554 | 0.9249 |
306
+ | 0.4381 | 8.5 | 510 | 0.8685 | 0.6667 | 0.8685 | 0.9320 |
307
+ | 0.4381 | 8.5333 | 512 | 0.7903 | 0.6993 | 0.7903 | 0.8890 |
308
+ | 0.4381 | 8.5667 | 514 | 0.7515 | 0.7183 | 0.7515 | 0.8669 |
309
+ | 0.4381 | 8.6 | 516 | 0.7391 | 0.7183 | 0.7391 | 0.8597 |
310
+ | 0.4381 | 8.6333 | 518 | 0.7301 | 0.7234 | 0.7301 | 0.8544 |
311
+ | 0.4381 | 8.6667 | 520 | 0.7475 | 0.7234 | 0.7475 | 0.8646 |
312
+ | 0.4381 | 8.7 | 522 | 0.7453 | 0.7101 | 0.7453 | 0.8633 |
313
+ | 0.4381 | 8.7333 | 524 | 0.7881 | 0.7143 | 0.7881 | 0.8877 |
314
+ | 0.4381 | 8.7667 | 526 | 0.8805 | 0.7237 | 0.8805 | 0.9383 |
315
+ | 0.4381 | 8.8 | 528 | 0.8755 | 0.7355 | 0.8755 | 0.9357 |
316
+ | 0.4381 | 8.8333 | 530 | 0.8171 | 0.7162 | 0.8171 | 0.9039 |
317
+ | 0.4381 | 8.8667 | 532 | 0.8049 | 0.7248 | 0.8049 | 0.8972 |
318
+ | 0.4381 | 8.9 | 534 | 0.7734 | 0.7143 | 0.7734 | 0.8795 |
319
+ | 0.4381 | 8.9333 | 536 | 0.8048 | 0.7248 | 0.8048 | 0.8971 |
320
+ | 0.4381 | 8.9667 | 538 | 0.8091 | 0.7143 | 0.8091 | 0.8995 |
321
+ | 0.4381 | 9.0 | 540 | 0.8478 | 0.7172 | 0.8478 | 0.9208 |
322
+ | 0.4381 | 9.0333 | 542 | 0.8849 | 0.7226 | 0.8849 | 0.9407 |
323
+ | 0.4381 | 9.0667 | 544 | 0.8528 | 0.7226 | 0.8528 | 0.9235 |
324
+ | 0.4381 | 9.1 | 546 | 0.7659 | 0.7101 | 0.7659 | 0.8751 |
325
+ | 0.4381 | 9.1333 | 548 | 0.7472 | 0.7101 | 0.7472 | 0.8644 |
326
+ | 0.4381 | 9.1667 | 550 | 0.8087 | 0.7234 | 0.8087 | 0.8993 |
327
+ | 0.4381 | 9.2 | 552 | 0.8506 | 0.7050 | 0.8506 | 0.9223 |
328
+ | 0.4381 | 9.2333 | 554 | 0.9722 | 0.7037 | 0.9722 | 0.9860 |
329
+ | 0.4381 | 9.2667 | 556 | 0.9701 | 0.6531 | 0.9701 | 0.9849 |
330
+ | 0.4381 | 9.3 | 558 | 0.9635 | 0.6713 | 0.9635 | 0.9816 |
331
+ | 0.4381 | 9.3333 | 560 | 0.8869 | 0.6667 | 0.8869 | 0.9417 |
332
+ | 0.4381 | 9.3667 | 562 | 0.8044 | 0.7007 | 0.8044 | 0.8969 |
333
+ | 0.4381 | 9.4 | 564 | 0.7706 | 0.7007 | 0.7706 | 0.8778 |
334
+ | 0.4381 | 9.4333 | 566 | 0.7952 | 0.6944 | 0.7952 | 0.8917 |
335
+ | 0.4381 | 9.4667 | 568 | 0.8372 | 0.6968 | 0.8372 | 0.9150 |
336
+ | 0.4381 | 9.5 | 570 | 0.8209 | 0.7123 | 0.8209 | 0.9060 |
337
+ | 0.4381 | 9.5333 | 572 | 0.8126 | 0.7007 | 0.8126 | 0.9014 |
338
+ | 0.4381 | 9.5667 | 574 | 0.8475 | 0.6912 | 0.8475 | 0.9206 |
339
+ | 0.4381 | 9.6 | 576 | 0.9785 | 0.6667 | 0.9785 | 0.9892 |
340
+ | 0.4381 | 9.6333 | 578 | 1.1361 | 0.6456 | 1.1361 | 1.0659 |
341
+ | 0.4381 | 9.6667 | 580 | 1.1914 | 0.6375 | 1.1914 | 1.0915 |
342
+ | 0.4381 | 9.7 | 582 | 1.0557 | 0.7044 | 1.0557 | 1.0275 |
343
+ | 0.4381 | 9.7333 | 584 | 0.8634 | 0.6846 | 0.8634 | 0.9292 |
344
+ | 0.4381 | 9.7667 | 586 | 0.8032 | 0.6901 | 0.8032 | 0.8962 |
345
+ | 0.4381 | 9.8 | 588 | 0.8126 | 0.7034 | 0.8126 | 0.9014 |
346
+ | 0.4381 | 9.8333 | 590 | 0.8717 | 0.6846 | 0.8717 | 0.9336 |
347
+ | 0.4381 | 9.8667 | 592 | 0.8876 | 0.6711 | 0.8876 | 0.9421 |
348
+ | 0.4381 | 9.9 | 594 | 0.8712 | 0.6761 | 0.8712 | 0.9334 |
349
+ | 0.4381 | 9.9333 | 596 | 0.8148 | 0.7042 | 0.8148 | 0.9026 |
350
+ | 0.4381 | 9.9667 | 598 | 0.7702 | 0.7234 | 0.7702 | 0.8776 |
351
+ | 0.4381 | 10.0 | 600 | 0.8041 | 0.7101 | 0.8041 | 0.8967 |
352
+ | 0.4381 | 10.0333 | 602 | 0.8595 | 0.6842 | 0.8595 | 0.9271 |
353
+ | 0.4381 | 10.0667 | 604 | 0.8469 | 0.6753 | 0.8469 | 0.9203 |
354
+ | 0.4381 | 10.1 | 606 | 0.8865 | 0.6994 | 0.8865 | 0.9416 |
355
+ | 0.4381 | 10.1333 | 608 | 0.9435 | 0.7030 | 0.9435 | 0.9713 |
356
+ | 0.4381 | 10.1667 | 610 | 0.8780 | 0.6968 | 0.8780 | 0.9370 |
357
+ | 0.4381 | 10.2 | 612 | 0.8393 | 0.6857 | 0.8393 | 0.9161 |
358
+ | 0.4381 | 10.2333 | 614 | 0.8593 | 0.6763 | 0.8593 | 0.9270 |
359
+ | 0.4381 | 10.2667 | 616 | 0.9440 | 0.6536 | 0.9440 | 0.9716 |
360
+ | 0.4381 | 10.3 | 618 | 1.0306 | 0.6905 | 1.0306 | 1.0152 |
361
+ | 0.4381 | 10.3333 | 620 | 1.1113 | 0.6821 | 1.1113 | 1.0542 |
362
+ | 0.4381 | 10.3667 | 622 | 1.1181 | 0.6977 | 1.1181 | 1.0574 |
363
+ | 0.4381 | 10.4 | 624 | 0.9765 | 0.6748 | 0.9765 | 0.9882 |
364
+ | 0.4381 | 10.4333 | 626 | 0.8685 | 0.6752 | 0.8685 | 0.9319 |
365
+ | 0.4381 | 10.4667 | 628 | 0.7882 | 0.6714 | 0.7882 | 0.8878 |
366
+ | 0.4381 | 10.5 | 630 | 0.7696 | 0.6515 | 0.7696 | 0.8773 |
367
+ | 0.4381 | 10.5333 | 632 | 0.7813 | 0.6667 | 0.7813 | 0.8839 |
368
+
369
+
370
+ ### Framework versions
371
+
372
+ - Transformers 4.44.2
373
+ - Pytorch 2.4.0+cu118
374
+ - Datasets 2.21.0
375
+ - Tokenizers 0.19.1
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "aubmindlab/bert-base-arabertv02",
3
+ "architectures": [
4
+ "BertForSequenceClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 768,
11
+ "id2label": {
12
+ "0": "LABEL_0"
13
+ },
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "label2id": {
17
+ "LABEL_0": 0
18
+ },
19
+ "layer_norm_eps": 1e-12,
20
+ "max_position_embeddings": 512,
21
+ "model_type": "bert",
22
+ "num_attention_heads": 12,
23
+ "num_hidden_layers": 12,
24
+ "pad_token_id": 0,
25
+ "position_embedding_type": "absolute",
26
+ "problem_type": "regression",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.44.2",
29
+ "type_vocab_size": 2,
30
+ "use_cache": true,
31
+ "vocab_size": 64000
32
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:68d399e30a7a383c091a7fbe365c7b9dcce5a8d21512ace2614a8ed4c60bc6b4
3
+ size 540799996
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:01942f67b2f65cdd2ebee85e4363b0fb1be8ee0eb8e4566056e13bcbcb297162
3
+ size 5304