MayBashendy commited on
Commit
f8a6d13
·
verified ·
1 Parent(s): d34610f

Training in progress, step 500

Browse files
Files changed (4) hide show
  1. README.md +314 -0
  2. config.json +32 -0
  3. model.safetensors +3 -0
  4. training_args.bin +3 -0
README.md ADDED
@@ -0,0 +1,314 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ base_model: aubmindlab/bert-base-arabertv02
4
+ tags:
5
+ - generated_from_trainer
6
+ model-index:
7
+ - name: ArabicNewSplits7_OSS_usingWellWrittenEssays_FineTuningAraBERT_run2_AugV5_k5_task1_organization
8
+ results: []
9
+ ---
10
+
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
+
14
+ # ArabicNewSplits7_OSS_usingWellWrittenEssays_FineTuningAraBERT_run2_AugV5_k5_task1_organization
15
+
16
+ This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset.
17
+ It achieves the following results on the evaluation set:
18
+ - Loss: 0.7187
19
+ - Qwk: 0.6809
20
+ - Mse: 0.7187
21
+ - Rmse: 0.8477
22
+
23
+ ## Model description
24
+
25
+ More information needed
26
+
27
+ ## Intended uses & limitations
28
+
29
+ More information needed
30
+
31
+ ## Training and evaluation data
32
+
33
+ More information needed
34
+
35
+ ## Training procedure
36
+
37
+ ### Training hyperparameters
38
+
39
+ The following hyperparameters were used during training:
40
+ - learning_rate: 2e-05
41
+ - train_batch_size: 8
42
+ - eval_batch_size: 8
43
+ - seed: 42
44
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
45
+ - lr_scheduler_type: linear
46
+ - num_epochs: 100
47
+
48
+ ### Training results
49
+
50
+ | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse |
51
+ |:-------------:|:-------:|:----:|:---------------:|:-------:|:------:|:------:|
52
+ | No log | 0.0526 | 2 | 6.7112 | 0.0308 | 6.7112 | 2.5906 |
53
+ | No log | 0.1053 | 4 | 5.0320 | 0.0741 | 5.0320 | 2.2432 |
54
+ | No log | 0.1579 | 6 | 3.0590 | 0.0988 | 3.0590 | 1.7490 |
55
+ | No log | 0.2105 | 8 | 3.5834 | -0.0455 | 3.5834 | 1.8930 |
56
+ | No log | 0.2632 | 10 | 2.3857 | 0.1295 | 2.3857 | 1.5446 |
57
+ | No log | 0.3158 | 12 | 1.8640 | 0.2807 | 1.8640 | 1.3653 |
58
+ | No log | 0.3684 | 14 | 1.9271 | 0.2478 | 1.9271 | 1.3882 |
59
+ | No log | 0.4211 | 16 | 1.7681 | 0.2037 | 1.7681 | 1.3297 |
60
+ | No log | 0.4737 | 18 | 1.6453 | 0.2385 | 1.6453 | 1.2827 |
61
+ | No log | 0.5263 | 20 | 1.5609 | 0.2832 | 1.5609 | 1.2494 |
62
+ | No log | 0.5789 | 22 | 1.4062 | 0.2982 | 1.4062 | 1.1858 |
63
+ | No log | 0.6316 | 24 | 1.3768 | 0.3419 | 1.3768 | 1.1734 |
64
+ | No log | 0.6842 | 26 | 1.2186 | 0.3932 | 1.2186 | 1.1039 |
65
+ | No log | 0.7368 | 28 | 1.0786 | 0.3932 | 1.0786 | 1.0386 |
66
+ | No log | 0.7895 | 30 | 1.0395 | 0.4237 | 1.0395 | 1.0195 |
67
+ | No log | 0.8421 | 32 | 1.1152 | 0.4746 | 1.1152 | 1.0560 |
68
+ | No log | 0.8947 | 34 | 1.2078 | 0.3009 | 1.2078 | 1.0990 |
69
+ | No log | 0.9474 | 36 | 1.2400 | 0.3826 | 1.2400 | 1.1135 |
70
+ | No log | 1.0 | 38 | 1.3428 | 0.3540 | 1.3428 | 1.1588 |
71
+ | No log | 1.0526 | 40 | 1.3652 | 0.3860 | 1.3652 | 1.1684 |
72
+ | No log | 1.1053 | 42 | 1.3152 | 0.4274 | 1.3152 | 1.1468 |
73
+ | No log | 1.1579 | 44 | 1.2076 | 0.5039 | 1.2076 | 1.0989 |
74
+ | No log | 1.2105 | 46 | 1.1580 | 0.5366 | 1.1580 | 1.0761 |
75
+ | No log | 1.2632 | 48 | 1.0721 | 0.4833 | 1.0721 | 1.0354 |
76
+ | No log | 1.3158 | 50 | 1.0815 | 0.5333 | 1.0815 | 1.0400 |
77
+ | No log | 1.3684 | 52 | 1.1425 | 0.5344 | 1.1425 | 1.0689 |
78
+ | No log | 1.4211 | 54 | 1.0521 | 0.6222 | 1.0521 | 1.0257 |
79
+ | No log | 1.4737 | 56 | 0.9728 | 0.6567 | 0.9728 | 0.9863 |
80
+ | No log | 1.5263 | 58 | 0.8314 | 0.6765 | 0.8314 | 0.9118 |
81
+ | No log | 1.5789 | 60 | 0.7712 | 0.7234 | 0.7712 | 0.8782 |
82
+ | No log | 1.6316 | 62 | 0.7167 | 0.7432 | 0.7167 | 0.8466 |
83
+ | No log | 1.6842 | 64 | 0.7106 | 0.7123 | 0.7106 | 0.8430 |
84
+ | No log | 1.7368 | 66 | 0.7798 | 0.7484 | 0.7798 | 0.8831 |
85
+ | No log | 1.7895 | 68 | 0.9469 | 0.6763 | 0.9469 | 0.9731 |
86
+ | No log | 1.8421 | 70 | 1.1650 | 0.5612 | 1.1650 | 1.0794 |
87
+ | No log | 1.8947 | 72 | 1.3098 | 0.4444 | 1.3098 | 1.1445 |
88
+ | No log | 1.9474 | 74 | 1.2083 | 0.4724 | 1.2083 | 1.0992 |
89
+ | No log | 2.0 | 76 | 0.9657 | 0.6519 | 0.9657 | 0.9827 |
90
+ | No log | 2.0526 | 78 | 0.8900 | 0.6803 | 0.8900 | 0.9434 |
91
+ | No log | 2.1053 | 80 | 0.8231 | 0.6923 | 0.8231 | 0.9072 |
92
+ | No log | 2.1579 | 82 | 0.7638 | 0.6887 | 0.7638 | 0.8739 |
93
+ | No log | 2.2105 | 84 | 0.6883 | 0.7123 | 0.6883 | 0.8296 |
94
+ | No log | 2.2632 | 86 | 0.6781 | 0.7123 | 0.6781 | 0.8235 |
95
+ | No log | 2.3158 | 88 | 0.7299 | 0.7020 | 0.7299 | 0.8543 |
96
+ | No log | 2.3684 | 90 | 0.7685 | 0.6522 | 0.7685 | 0.8766 |
97
+ | No log | 2.4211 | 92 | 0.8886 | 0.6324 | 0.8886 | 0.9427 |
98
+ | No log | 2.4737 | 94 | 0.9075 | 0.6466 | 0.9075 | 0.9526 |
99
+ | No log | 2.5263 | 96 | 0.9685 | 0.6466 | 0.9685 | 0.9841 |
100
+ | No log | 2.5789 | 98 | 1.0295 | 0.5970 | 1.0295 | 1.0146 |
101
+ | No log | 2.6316 | 100 | 1.1996 | 0.5241 | 1.1996 | 1.0952 |
102
+ | No log | 2.6842 | 102 | 1.3043 | 0.5714 | 1.3043 | 1.1421 |
103
+ | No log | 2.7368 | 104 | 1.1431 | 0.5963 | 1.1431 | 1.0691 |
104
+ | No log | 2.7895 | 106 | 1.1626 | 0.6036 | 1.1626 | 1.0782 |
105
+ | No log | 2.8421 | 108 | 1.2960 | 0.6215 | 1.2960 | 1.1384 |
106
+ | No log | 2.8947 | 110 | 1.1783 | 0.6584 | 1.1783 | 1.0855 |
107
+ | No log | 2.9474 | 112 | 1.0655 | 0.5823 | 1.0655 | 1.0322 |
108
+ | No log | 3.0 | 114 | 1.0412 | 0.6386 | 1.0412 | 1.0204 |
109
+ | No log | 3.0526 | 116 | 0.9577 | 0.6875 | 0.9577 | 0.9786 |
110
+ | No log | 3.1053 | 118 | 0.8434 | 0.7485 | 0.8434 | 0.9184 |
111
+ | No log | 3.1579 | 120 | 0.7014 | 0.7564 | 0.7014 | 0.8375 |
112
+ | No log | 3.2105 | 122 | 0.6843 | 0.7361 | 0.6843 | 0.8272 |
113
+ | No log | 3.2632 | 124 | 0.6961 | 0.7586 | 0.6961 | 0.8344 |
114
+ | No log | 3.3158 | 126 | 0.7354 | 0.7172 | 0.7354 | 0.8575 |
115
+ | No log | 3.3684 | 128 | 0.8209 | 0.6939 | 0.8209 | 0.9060 |
116
+ | No log | 3.4211 | 130 | 0.9984 | 0.6289 | 0.9984 | 0.9992 |
117
+ | No log | 3.4737 | 132 | 0.9862 | 0.5960 | 0.9862 | 0.9931 |
118
+ | No log | 3.5263 | 134 | 0.8175 | 0.7075 | 0.8175 | 0.9042 |
119
+ | No log | 3.5789 | 136 | 0.7039 | 0.7383 | 0.7039 | 0.8390 |
120
+ | No log | 3.6316 | 138 | 0.6898 | 0.7383 | 0.6898 | 0.8306 |
121
+ | No log | 3.6842 | 140 | 0.7858 | 0.7421 | 0.7858 | 0.8864 |
122
+ | No log | 3.7368 | 142 | 1.0029 | 0.7093 | 1.0029 | 1.0014 |
123
+ | No log | 3.7895 | 144 | 1.0623 | 0.6927 | 1.0623 | 1.0307 |
124
+ | No log | 3.8421 | 146 | 0.9173 | 0.7442 | 0.9173 | 0.9578 |
125
+ | No log | 3.8947 | 148 | 0.7616 | 0.7485 | 0.7616 | 0.8727 |
126
+ | No log | 3.9474 | 150 | 0.7445 | 0.7547 | 0.7445 | 0.8628 |
127
+ | No log | 4.0 | 152 | 0.8401 | 0.7170 | 0.8401 | 0.9166 |
128
+ | No log | 4.0526 | 154 | 0.8968 | 0.7125 | 0.8968 | 0.9470 |
129
+ | No log | 4.1053 | 156 | 0.9038 | 0.7013 | 0.9038 | 0.9507 |
130
+ | No log | 4.1579 | 158 | 0.8038 | 0.6757 | 0.8038 | 0.8965 |
131
+ | No log | 4.2105 | 160 | 0.8046 | 0.7123 | 0.8046 | 0.8970 |
132
+ | No log | 4.2632 | 162 | 0.8574 | 0.6667 | 0.8574 | 0.9260 |
133
+ | No log | 4.3158 | 164 | 0.8768 | 0.6241 | 0.8768 | 0.9364 |
134
+ | No log | 4.3684 | 166 | 0.9097 | 0.6338 | 0.9097 | 0.9538 |
135
+ | No log | 4.4211 | 168 | 0.9373 | 0.6800 | 0.9373 | 0.9681 |
136
+ | No log | 4.4737 | 170 | 0.9439 | 0.7044 | 0.9439 | 0.9716 |
137
+ | No log | 4.5263 | 172 | 0.8172 | 0.7515 | 0.8172 | 0.9040 |
138
+ | No log | 4.5789 | 174 | 0.7099 | 0.7564 | 0.7099 | 0.8426 |
139
+ | No log | 4.6316 | 176 | 0.7067 | 0.7532 | 0.7067 | 0.8407 |
140
+ | No log | 4.6842 | 178 | 0.7851 | 0.6939 | 0.7851 | 0.8861 |
141
+ | No log | 4.7368 | 180 | 0.9916 | 0.6573 | 0.9916 | 0.9958 |
142
+ | No log | 4.7895 | 182 | 1.1008 | 0.6122 | 1.1008 | 1.0492 |
143
+ | No log | 4.8421 | 184 | 1.0257 | 0.6800 | 1.0257 | 1.0128 |
144
+ | No log | 4.8947 | 186 | 0.8894 | 0.6712 | 0.8894 | 0.9431 |
145
+ | No log | 4.9474 | 188 | 0.7828 | 0.7123 | 0.7828 | 0.8847 |
146
+ | No log | 5.0 | 190 | 0.7554 | 0.7673 | 0.7554 | 0.8692 |
147
+ | No log | 5.0526 | 192 | 0.8687 | 0.7044 | 0.8687 | 0.9320 |
148
+ | No log | 5.1053 | 194 | 0.8829 | 0.6842 | 0.8829 | 0.9397 |
149
+ | No log | 5.1579 | 196 | 1.0145 | 0.6625 | 1.0145 | 1.0072 |
150
+ | No log | 5.2105 | 198 | 1.2098 | 0.6353 | 1.2098 | 1.0999 |
151
+ | No log | 5.2632 | 200 | 1.0117 | 0.6133 | 1.0117 | 1.0058 |
152
+ | No log | 5.3158 | 202 | 0.8677 | 0.6567 | 0.8677 | 0.9315 |
153
+ | No log | 5.3684 | 204 | 0.8191 | 0.6418 | 0.8191 | 0.9050 |
154
+ | No log | 5.4211 | 206 | 0.8504 | 0.6861 | 0.8504 | 0.9222 |
155
+ | No log | 5.4737 | 208 | 0.7933 | 0.6944 | 0.7933 | 0.8907 |
156
+ | No log | 5.5263 | 210 | 0.8194 | 0.7349 | 0.8194 | 0.9052 |
157
+ | No log | 5.5789 | 212 | 1.0559 | 0.6911 | 1.0559 | 1.0276 |
158
+ | No log | 5.6316 | 214 | 1.1410 | 0.6766 | 1.1410 | 1.0682 |
159
+ | No log | 5.6842 | 216 | 0.8497 | 0.7204 | 0.8497 | 0.9218 |
160
+ | No log | 5.7368 | 218 | 0.5747 | 0.8276 | 0.5747 | 0.7581 |
161
+ | No log | 5.7895 | 220 | 0.5475 | 0.8439 | 0.5475 | 0.7400 |
162
+ | No log | 5.8421 | 222 | 0.6845 | 0.8066 | 0.6845 | 0.8273 |
163
+ | No log | 5.8947 | 224 | 1.0058 | 0.7120 | 1.0058 | 1.0029 |
164
+ | No log | 5.9474 | 226 | 1.0245 | 0.6882 | 1.0245 | 1.0122 |
165
+ | No log | 6.0 | 228 | 0.8454 | 0.7051 | 0.8454 | 0.9194 |
166
+ | No log | 6.0526 | 230 | 0.6987 | 0.7050 | 0.6987 | 0.8359 |
167
+ | No log | 6.1053 | 232 | 0.7069 | 0.7143 | 0.7069 | 0.8408 |
168
+ | No log | 6.1579 | 234 | 0.7702 | 0.6906 | 0.7702 | 0.8776 |
169
+ | No log | 6.2105 | 236 | 0.7865 | 0.6912 | 0.7865 | 0.8868 |
170
+ | No log | 6.2632 | 238 | 0.8779 | 0.6812 | 0.8779 | 0.9369 |
171
+ | No log | 6.3158 | 240 | 1.1295 | 0.6118 | 1.1295 | 1.0628 |
172
+ | No log | 6.3684 | 242 | 1.2109 | 0.6304 | 1.2109 | 1.1004 |
173
+ | No log | 6.4211 | 244 | 1.0884 | 0.6484 | 1.0884 | 1.0433 |
174
+ | No log | 6.4737 | 246 | 0.7521 | 0.7564 | 0.7521 | 0.8672 |
175
+ | No log | 6.5263 | 248 | 0.5881 | 0.7483 | 0.5881 | 0.7669 |
176
+ | No log | 6.5789 | 250 | 0.5881 | 0.7273 | 0.5881 | 0.7669 |
177
+ | No log | 6.6316 | 252 | 0.7233 | 0.76 | 0.7233 | 0.8505 |
178
+ | No log | 6.6842 | 254 | 1.0051 | 0.7168 | 1.0051 | 1.0025 |
179
+ | No log | 6.7368 | 256 | 1.0251 | 0.6667 | 1.0251 | 1.0125 |
180
+ | No log | 6.7895 | 258 | 0.9800 | 0.6759 | 0.9800 | 0.9899 |
181
+ | No log | 6.8421 | 260 | 0.8681 | 0.6809 | 0.8681 | 0.9317 |
182
+ | No log | 6.8947 | 262 | 0.8266 | 0.6957 | 0.8266 | 0.9092 |
183
+ | No log | 6.9474 | 264 | 0.8303 | 0.6912 | 0.8303 | 0.9112 |
184
+ | No log | 7.0 | 266 | 0.8757 | 0.6567 | 0.8757 | 0.9358 |
185
+ | No log | 7.0526 | 268 | 0.8741 | 0.6567 | 0.8741 | 0.9349 |
186
+ | No log | 7.1053 | 270 | 0.8640 | 0.6475 | 0.8640 | 0.9295 |
187
+ | No log | 7.1579 | 272 | 0.7721 | 0.7237 | 0.7721 | 0.8787 |
188
+ | No log | 7.2105 | 274 | 0.6175 | 0.7733 | 0.6175 | 0.7858 |
189
+ | No log | 7.2632 | 276 | 0.5786 | 0.8105 | 0.5786 | 0.7606 |
190
+ | No log | 7.3158 | 278 | 0.6157 | 0.8148 | 0.6157 | 0.7847 |
191
+ | No log | 7.3684 | 280 | 0.8346 | 0.7314 | 0.8346 | 0.9135 |
192
+ | No log | 7.4211 | 282 | 1.1240 | 0.6702 | 1.1240 | 1.0602 |
193
+ | No log | 7.4737 | 284 | 1.1384 | 0.6562 | 1.1384 | 1.0670 |
194
+ | No log | 7.5263 | 286 | 0.9915 | 0.6818 | 0.9915 | 0.9958 |
195
+ | No log | 7.5789 | 288 | 0.8486 | 0.7456 | 0.8486 | 0.9212 |
196
+ | No log | 7.6316 | 290 | 0.7472 | 0.7248 | 0.7472 | 0.8644 |
197
+ | No log | 7.6842 | 292 | 0.7854 | 0.7083 | 0.7854 | 0.8862 |
198
+ | No log | 7.7368 | 294 | 0.8367 | 0.7273 | 0.8367 | 0.9147 |
199
+ | No log | 7.7895 | 296 | 0.8321 | 0.7215 | 0.8321 | 0.9122 |
200
+ | No log | 7.8421 | 298 | 0.7852 | 0.6974 | 0.7852 | 0.8861 |
201
+ | No log | 7.8947 | 300 | 0.7244 | 0.7172 | 0.7244 | 0.8511 |
202
+ | No log | 7.9474 | 302 | 0.7058 | 0.7383 | 0.7058 | 0.8401 |
203
+ | No log | 8.0 | 304 | 0.8259 | 0.6531 | 0.8259 | 0.9088 |
204
+ | No log | 8.0526 | 306 | 0.8460 | 0.6531 | 0.8460 | 0.9198 |
205
+ | No log | 8.1053 | 308 | 0.7305 | 0.6906 | 0.7305 | 0.8547 |
206
+ | No log | 8.1579 | 310 | 0.6830 | 0.7482 | 0.6830 | 0.8264 |
207
+ | No log | 8.2105 | 312 | 0.7184 | 0.7299 | 0.7184 | 0.8476 |
208
+ | No log | 8.2632 | 314 | 0.8681 | 0.6418 | 0.8681 | 0.9317 |
209
+ | No log | 8.3158 | 316 | 1.0623 | 0.5714 | 1.0623 | 1.0307 |
210
+ | No log | 8.3684 | 318 | 1.0571 | 0.5541 | 1.0571 | 1.0281 |
211
+ | No log | 8.4211 | 320 | 0.8731 | 0.6715 | 0.8731 | 0.9344 |
212
+ | No log | 8.4737 | 322 | 0.7171 | 0.7050 | 0.7171 | 0.8468 |
213
+ | No log | 8.5263 | 324 | 0.6539 | 0.7448 | 0.6539 | 0.8087 |
214
+ | No log | 8.5789 | 326 | 0.6448 | 0.7755 | 0.6448 | 0.8030 |
215
+ | No log | 8.6316 | 328 | 0.7672 | 0.7260 | 0.7672 | 0.8759 |
216
+ | No log | 8.6842 | 330 | 0.9056 | 0.7152 | 0.9056 | 0.9517 |
217
+ | No log | 8.7368 | 332 | 0.9095 | 0.6982 | 0.9095 | 0.9537 |
218
+ | No log | 8.7895 | 334 | 0.8292 | 0.7044 | 0.8292 | 0.9106 |
219
+ | No log | 8.8421 | 336 | 0.8320 | 0.6800 | 0.8320 | 0.9122 |
220
+ | No log | 8.8947 | 338 | 0.8131 | 0.6901 | 0.8131 | 0.9017 |
221
+ | No log | 8.9474 | 340 | 0.7949 | 0.6765 | 0.7949 | 0.8916 |
222
+ | No log | 9.0 | 342 | 0.8464 | 0.6765 | 0.8464 | 0.9200 |
223
+ | No log | 9.0526 | 344 | 0.9910 | 0.6667 | 0.9910 | 0.9955 |
224
+ | No log | 9.1053 | 346 | 1.1114 | 0.6543 | 1.1114 | 1.0542 |
225
+ | No log | 9.1579 | 348 | 1.0271 | 0.6434 | 1.0271 | 1.0134 |
226
+ | No log | 9.2105 | 350 | 0.9152 | 0.6667 | 0.9152 | 0.9566 |
227
+ | No log | 9.2632 | 352 | 0.8414 | 0.6667 | 0.8414 | 0.9173 |
228
+ | No log | 9.3158 | 354 | 0.8536 | 0.6806 | 0.8536 | 0.9239 |
229
+ | No log | 9.3684 | 356 | 0.8493 | 0.6755 | 0.8493 | 0.9216 |
230
+ | No log | 9.4211 | 358 | 0.9131 | 0.6928 | 0.9131 | 0.9556 |
231
+ | No log | 9.4737 | 360 | 0.8973 | 0.6939 | 0.8973 | 0.9473 |
232
+ | No log | 9.5263 | 362 | 0.8392 | 0.6809 | 0.8392 | 0.9161 |
233
+ | No log | 9.5789 | 364 | 0.8115 | 0.6667 | 0.8115 | 0.9009 |
234
+ | No log | 9.6316 | 366 | 0.7555 | 0.6906 | 0.7555 | 0.8692 |
235
+ | No log | 9.6842 | 368 | 0.6980 | 0.7448 | 0.6980 | 0.8355 |
236
+ | No log | 9.7368 | 370 | 0.7358 | 0.7133 | 0.7358 | 0.8578 |
237
+ | No log | 9.7895 | 372 | 0.7635 | 0.7329 | 0.7635 | 0.8738 |
238
+ | No log | 9.8421 | 374 | 0.7745 | 0.7746 | 0.7745 | 0.8800 |
239
+ | No log | 9.8947 | 376 | 0.9500 | 0.6857 | 0.9500 | 0.9747 |
240
+ | No log | 9.9474 | 378 | 1.0513 | 0.6703 | 1.0513 | 1.0253 |
241
+ | No log | 10.0 | 380 | 0.9810 | 0.6591 | 0.9810 | 0.9905 |
242
+ | No log | 10.0526 | 382 | 0.8239 | 0.7262 | 0.8239 | 0.9077 |
243
+ | No log | 10.1053 | 384 | 0.6629 | 0.7451 | 0.6629 | 0.8142 |
244
+ | No log | 10.1579 | 386 | 0.6117 | 0.7733 | 0.6117 | 0.7821 |
245
+ | No log | 10.2105 | 388 | 0.6168 | 0.7619 | 0.6168 | 0.7853 |
246
+ | No log | 10.2632 | 390 | 0.6772 | 0.7285 | 0.6772 | 0.8229 |
247
+ | No log | 10.3158 | 392 | 0.7816 | 0.7226 | 0.7816 | 0.8841 |
248
+ | No log | 10.3684 | 394 | 0.7685 | 0.7027 | 0.7685 | 0.8766 |
249
+ | No log | 10.4211 | 396 | 0.7553 | 0.7042 | 0.7553 | 0.8691 |
250
+ | No log | 10.4737 | 398 | 0.7351 | 0.7007 | 0.7351 | 0.8574 |
251
+ | No log | 10.5263 | 400 | 0.7699 | 0.6906 | 0.7699 | 0.8775 |
252
+ | No log | 10.5789 | 402 | 0.8561 | 0.7013 | 0.8561 | 0.9252 |
253
+ | No log | 10.6316 | 404 | 0.8788 | 0.7337 | 0.8788 | 0.9374 |
254
+ | No log | 10.6842 | 406 | 0.7508 | 0.7237 | 0.7508 | 0.8665 |
255
+ | No log | 10.7368 | 408 | 0.7007 | 0.7517 | 0.7007 | 0.8371 |
256
+ | No log | 10.7895 | 410 | 0.7222 | 0.7451 | 0.7222 | 0.8499 |
257
+ | No log | 10.8421 | 412 | 0.8348 | 0.7590 | 0.8348 | 0.9137 |
258
+ | No log | 10.8947 | 414 | 0.8543 | 0.7381 | 0.8543 | 0.9243 |
259
+ | No log | 10.9474 | 416 | 0.8080 | 0.7456 | 0.8080 | 0.8989 |
260
+ | No log | 11.0 | 418 | 0.6942 | 0.7727 | 0.6942 | 0.8332 |
261
+ | No log | 11.0526 | 420 | 0.6038 | 0.8118 | 0.6038 | 0.7771 |
262
+ | No log | 11.1053 | 422 | 0.5692 | 0.7904 | 0.5692 | 0.7545 |
263
+ | No log | 11.1579 | 424 | 0.5702 | 0.7898 | 0.5702 | 0.7551 |
264
+ | No log | 11.2105 | 426 | 0.5831 | 0.7682 | 0.5831 | 0.7636 |
265
+ | No log | 11.2632 | 428 | 0.6738 | 0.7643 | 0.6738 | 0.8209 |
266
+ | No log | 11.3158 | 430 | 0.7907 | 0.7059 | 0.7907 | 0.8892 |
267
+ | No log | 11.3684 | 432 | 0.7955 | 0.6667 | 0.7955 | 0.8919 |
268
+ | No log | 11.4211 | 434 | 0.7891 | 0.6667 | 0.7891 | 0.8883 |
269
+ | No log | 11.4737 | 436 | 0.7474 | 0.6912 | 0.7474 | 0.8645 |
270
+ | No log | 11.5263 | 438 | 0.7715 | 0.6667 | 0.7715 | 0.8783 |
271
+ | No log | 11.5789 | 440 | 0.8533 | 0.6797 | 0.8533 | 0.9238 |
272
+ | No log | 11.6316 | 442 | 0.8512 | 0.6797 | 0.8512 | 0.9226 |
273
+ | No log | 11.6842 | 444 | 0.7462 | 0.7027 | 0.7462 | 0.8638 |
274
+ | No log | 11.7368 | 446 | 0.7307 | 0.7403 | 0.7307 | 0.8548 |
275
+ | No log | 11.7895 | 448 | 0.8191 | 0.6918 | 0.8191 | 0.9050 |
276
+ | No log | 11.8421 | 450 | 0.9200 | 0.7314 | 0.9200 | 0.9592 |
277
+ | No log | 11.8947 | 452 | 0.8952 | 0.7251 | 0.8952 | 0.9462 |
278
+ | No log | 11.9474 | 454 | 0.8186 | 0.7059 | 0.8186 | 0.9048 |
279
+ | No log | 12.0 | 456 | 0.8036 | 0.6712 | 0.8036 | 0.8964 |
280
+ | No log | 12.0526 | 458 | 0.7945 | 0.6714 | 0.7945 | 0.8913 |
281
+ | No log | 12.1053 | 460 | 0.8190 | 0.6974 | 0.8190 | 0.9050 |
282
+ | No log | 12.1579 | 462 | 0.8347 | 0.6839 | 0.8347 | 0.9136 |
283
+ | No log | 12.2105 | 464 | 0.7672 | 0.7059 | 0.7672 | 0.8759 |
284
+ | No log | 12.2632 | 466 | 0.7541 | 0.7470 | 0.7541 | 0.8684 |
285
+ | No log | 12.3158 | 468 | 0.7353 | 0.7394 | 0.7353 | 0.8575 |
286
+ | No log | 12.3684 | 470 | 0.7275 | 0.7170 | 0.7275 | 0.8529 |
287
+ | No log | 12.4211 | 472 | 0.7745 | 0.7170 | 0.7745 | 0.8800 |
288
+ | No log | 12.4737 | 474 | 0.8039 | 0.6968 | 0.8039 | 0.8966 |
289
+ | No log | 12.5263 | 476 | 0.8260 | 0.6879 | 0.8260 | 0.9088 |
290
+ | No log | 12.5789 | 478 | 0.8219 | 0.6879 | 0.8219 | 0.9066 |
291
+ | No log | 12.6316 | 480 | 0.8583 | 0.6957 | 0.8583 | 0.9264 |
292
+ | No log | 12.6842 | 482 | 0.8078 | 0.6620 | 0.8078 | 0.8988 |
293
+ | No log | 12.7368 | 484 | 0.7497 | 0.6619 | 0.7497 | 0.8659 |
294
+ | No log | 12.7895 | 486 | 0.8014 | 0.6667 | 0.8014 | 0.8952 |
295
+ | No log | 12.8421 | 488 | 0.8173 | 0.6667 | 0.8173 | 0.9040 |
296
+ | No log | 12.8947 | 490 | 0.8500 | 0.6713 | 0.8500 | 0.9220 |
297
+ | No log | 12.9474 | 492 | 0.7709 | 0.6939 | 0.7709 | 0.8780 |
298
+ | No log | 13.0 | 494 | 0.6602 | 0.7273 | 0.6602 | 0.8126 |
299
+ | No log | 13.0526 | 496 | 0.6527 | 0.75 | 0.6527 | 0.8079 |
300
+ | No log | 13.1053 | 498 | 0.7053 | 0.6933 | 0.7053 | 0.8398 |
301
+ | 0.3843 | 13.1579 | 500 | 0.8075 | 0.7262 | 0.8075 | 0.8986 |
302
+ | 0.3843 | 13.2105 | 502 | 0.9760 | 0.7241 | 0.9760 | 0.9879 |
303
+ | 0.3843 | 13.2632 | 504 | 0.9240 | 0.7241 | 0.9240 | 0.9613 |
304
+ | 0.3843 | 13.3158 | 506 | 0.7432 | 0.7160 | 0.7432 | 0.8621 |
305
+ | 0.3843 | 13.3684 | 508 | 0.6784 | 0.7042 | 0.6784 | 0.8237 |
306
+ | 0.3843 | 13.4211 | 510 | 0.7187 | 0.6809 | 0.7187 | 0.8477 |
307
+
308
+
309
+ ### Framework versions
310
+
311
+ - Transformers 4.44.2
312
+ - Pytorch 2.4.0+cu118
313
+ - Datasets 2.21.0
314
+ - Tokenizers 0.19.1
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "aubmindlab/bert-base-arabertv02",
3
+ "architectures": [
4
+ "BertForSequenceClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 768,
11
+ "id2label": {
12
+ "0": "LABEL_0"
13
+ },
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "label2id": {
17
+ "LABEL_0": 0
18
+ },
19
+ "layer_norm_eps": 1e-12,
20
+ "max_position_embeddings": 512,
21
+ "model_type": "bert",
22
+ "num_attention_heads": 12,
23
+ "num_hidden_layers": 12,
24
+ "pad_token_id": 0,
25
+ "position_embedding_type": "absolute",
26
+ "problem_type": "regression",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.44.2",
29
+ "type_vocab_size": 2,
30
+ "use_cache": true,
31
+ "vocab_size": 64000
32
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:38b7eca1948ea8bf45d3c7f2e73c6c7e7b993e418e1b6576d1a61ccd68f27e41
3
+ size 540799996
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:17c79545d53148466d95744d6b3a8f9412166a856c64aedeef62c58686c758b3
3
+ size 5304