MayBashendy commited on
Commit
028a15e
·
verified ·
1 Parent(s): beaf09a

Training in progress, step 500

Browse files
Files changed (4) hide show
  1. README.md +318 -0
  2. config.json +32 -0
  3. model.safetensors +3 -0
  4. training_args.bin +3 -0
README.md ADDED
@@ -0,0 +1,318 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ base_model: aubmindlab/bert-base-arabertv02
4
+ tags:
5
+ - generated_from_trainer
6
+ model-index:
7
+ - name: ArabicNewSplits7_OSS_usingWellWrittenEssays_FineTuningAraBERT_run2_AugV5_k1_task1_organization
8
+ results: []
9
+ ---
10
+
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
+
14
+ # ArabicNewSplits7_OSS_usingWellWrittenEssays_FineTuningAraBERT_run2_AugV5_k1_task1_organization
15
+
16
+ This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset.
17
+ It achieves the following results on the evaluation set:
18
+ - Loss: 0.8721
19
+ - Qwk: 0.6901
20
+ - Mse: 0.8721
21
+ - Rmse: 0.9339
22
+
23
+ ## Model description
24
+
25
+ More information needed
26
+
27
+ ## Intended uses & limitations
28
+
29
+ More information needed
30
+
31
+ ## Training and evaluation data
32
+
33
+ More information needed
34
+
35
+ ## Training procedure
36
+
37
+ ### Training hyperparameters
38
+
39
+ The following hyperparameters were used during training:
40
+ - learning_rate: 2e-05
41
+ - train_batch_size: 8
42
+ - eval_batch_size: 8
43
+ - seed: 42
44
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
45
+ - lr_scheduler_type: linear
46
+ - num_epochs: 100
47
+
48
+ ### Training results
49
+
50
+ | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse |
51
+ |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|
52
+ | No log | 0.25 | 2 | 6.9756 | 0.0299 | 6.9756 | 2.6411 |
53
+ | No log | 0.5 | 4 | 4.9600 | 0.0519 | 4.9600 | 2.2271 |
54
+ | No log | 0.75 | 6 | 2.9865 | 0.0848 | 2.9865 | 1.7281 |
55
+ | No log | 1.0 | 8 | 2.1997 | 0.1286 | 2.1997 | 1.4831 |
56
+ | No log | 1.25 | 10 | 1.8600 | 0.2124 | 1.8600 | 1.3638 |
57
+ | No log | 1.5 | 12 | 1.6690 | 0.1905 | 1.6690 | 1.2919 |
58
+ | No log | 1.75 | 14 | 1.6731 | 0.1509 | 1.6731 | 1.2935 |
59
+ | No log | 2.0 | 16 | 2.0864 | 0.1311 | 2.0864 | 1.4444 |
60
+ | No log | 2.25 | 18 | 2.1462 | 0.1803 | 2.1462 | 1.4650 |
61
+ | No log | 2.5 | 20 | 1.9214 | 0.1622 | 1.9214 | 1.3861 |
62
+ | No log | 2.75 | 22 | 1.4132 | 0.3091 | 1.4132 | 1.1888 |
63
+ | No log | 3.0 | 24 | 1.2415 | 0.3540 | 1.2415 | 1.1142 |
64
+ | No log | 3.25 | 26 | 1.2575 | 0.3793 | 1.2575 | 1.1214 |
65
+ | No log | 3.5 | 28 | 1.2397 | 0.3717 | 1.2397 | 1.1134 |
66
+ | No log | 3.75 | 30 | 1.3851 | 0.2957 | 1.3851 | 1.1769 |
67
+ | No log | 4.0 | 32 | 1.4620 | 0.2393 | 1.4620 | 1.2091 |
68
+ | No log | 4.25 | 34 | 1.3767 | 0.2521 | 1.3767 | 1.1733 |
69
+ | No log | 4.5 | 36 | 1.1201 | 0.4848 | 1.1201 | 1.0584 |
70
+ | No log | 4.75 | 38 | 1.0144 | 0.6061 | 1.0144 | 1.0072 |
71
+ | No log | 5.0 | 40 | 1.0413 | 0.6 | 1.0413 | 1.0204 |
72
+ | No log | 5.25 | 42 | 1.2394 | 0.4706 | 1.2394 | 1.1133 |
73
+ | No log | 5.5 | 44 | 1.3671 | 0.3833 | 1.3671 | 1.1692 |
74
+ | No log | 5.75 | 46 | 1.0641 | 0.5512 | 1.0641 | 1.0316 |
75
+ | No log | 6.0 | 48 | 1.0159 | 0.6533 | 1.0159 | 1.0079 |
76
+ | No log | 6.25 | 50 | 1.1652 | 0.6154 | 1.1652 | 1.0795 |
77
+ | No log | 6.5 | 52 | 1.2106 | 0.5211 | 1.2106 | 1.1003 |
78
+ | No log | 6.75 | 54 | 1.0655 | 0.6099 | 1.0655 | 1.0322 |
79
+ | No log | 7.0 | 56 | 1.0535 | 0.5857 | 1.0535 | 1.0264 |
80
+ | No log | 7.25 | 58 | 0.9915 | 0.6056 | 0.9915 | 0.9958 |
81
+ | No log | 7.5 | 60 | 0.8672 | 0.6528 | 0.8672 | 0.9312 |
82
+ | No log | 7.75 | 62 | 0.8603 | 0.7123 | 0.8603 | 0.9275 |
83
+ | No log | 8.0 | 64 | 0.9053 | 0.6933 | 0.9053 | 0.9515 |
84
+ | No log | 8.25 | 66 | 0.9247 | 0.7285 | 0.9247 | 0.9616 |
85
+ | No log | 8.5 | 68 | 0.9744 | 0.7020 | 0.9744 | 0.9871 |
86
+ | No log | 8.75 | 70 | 0.9792 | 0.6892 | 0.9792 | 0.9895 |
87
+ | No log | 9.0 | 72 | 1.0108 | 0.6528 | 1.0108 | 1.0054 |
88
+ | No log | 9.25 | 74 | 1.0288 | 0.6111 | 1.0288 | 1.0143 |
89
+ | No log | 9.5 | 76 | 0.9550 | 0.6573 | 0.9550 | 0.9772 |
90
+ | No log | 9.75 | 78 | 0.8953 | 0.6993 | 0.8953 | 0.9462 |
91
+ | No log | 10.0 | 80 | 0.8908 | 0.6892 | 0.8908 | 0.9438 |
92
+ | No log | 10.25 | 82 | 0.8809 | 0.6892 | 0.8809 | 0.9386 |
93
+ | No log | 10.5 | 84 | 0.8808 | 0.75 | 0.8808 | 0.9385 |
94
+ | No log | 10.75 | 86 | 1.0151 | 0.6328 | 1.0151 | 1.0075 |
95
+ | No log | 11.0 | 88 | 1.1088 | 0.6220 | 1.1088 | 1.0530 |
96
+ | No log | 11.25 | 90 | 1.0300 | 0.6309 | 1.0300 | 1.0149 |
97
+ | No log | 11.5 | 92 | 0.8771 | 0.6846 | 0.8771 | 0.9366 |
98
+ | No log | 11.75 | 94 | 0.7461 | 0.7483 | 0.7461 | 0.8638 |
99
+ | No log | 12.0 | 96 | 0.7069 | 0.7034 | 0.7069 | 0.8408 |
100
+ | No log | 12.25 | 98 | 0.7536 | 0.7114 | 0.7536 | 0.8681 |
101
+ | No log | 12.5 | 100 | 0.7916 | 0.72 | 0.7916 | 0.8897 |
102
+ | No log | 12.75 | 102 | 0.8244 | 0.7027 | 0.8244 | 0.9080 |
103
+ | No log | 13.0 | 104 | 1.0762 | 0.6590 | 1.0762 | 1.0374 |
104
+ | No log | 13.25 | 106 | 1.2229 | 0.5988 | 1.2229 | 1.1059 |
105
+ | No log | 13.5 | 108 | 1.1069 | 0.6093 | 1.1069 | 1.0521 |
106
+ | No log | 13.75 | 110 | 0.9202 | 0.6475 | 0.9202 | 0.9593 |
107
+ | No log | 14.0 | 112 | 0.7877 | 0.7042 | 0.7877 | 0.8875 |
108
+ | No log | 14.25 | 114 | 0.7905 | 0.7123 | 0.7905 | 0.8891 |
109
+ | No log | 14.5 | 116 | 0.8162 | 0.7152 | 0.8162 | 0.9034 |
110
+ | No log | 14.75 | 118 | 0.8505 | 0.6974 | 0.8505 | 0.9222 |
111
+ | No log | 15.0 | 120 | 0.9227 | 0.7456 | 0.9227 | 0.9606 |
112
+ | No log | 15.25 | 122 | 1.1740 | 0.6404 | 1.1740 | 1.0835 |
113
+ | No log | 15.5 | 124 | 1.2146 | 0.6102 | 1.2146 | 1.1021 |
114
+ | No log | 15.75 | 126 | 0.9490 | 0.6708 | 0.9490 | 0.9741 |
115
+ | No log | 16.0 | 128 | 0.6853 | 0.7534 | 0.6853 | 0.8278 |
116
+ | No log | 16.25 | 130 | 0.7250 | 0.6901 | 0.7250 | 0.8515 |
117
+ | No log | 16.5 | 132 | 0.7346 | 0.7083 | 0.7346 | 0.8571 |
118
+ | No log | 16.75 | 134 | 0.6563 | 0.7397 | 0.6563 | 0.8101 |
119
+ | No log | 17.0 | 136 | 0.7895 | 0.7237 | 0.7895 | 0.8885 |
120
+ | No log | 17.25 | 138 | 1.1174 | 0.6108 | 1.1174 | 1.0571 |
121
+ | No log | 17.5 | 140 | 1.1610 | 0.6012 | 1.1610 | 1.0775 |
122
+ | No log | 17.75 | 142 | 0.9747 | 0.6667 | 0.9747 | 0.9872 |
123
+ | No log | 18.0 | 144 | 0.9051 | 0.6667 | 0.9051 | 0.9514 |
124
+ | No log | 18.25 | 146 | 0.8716 | 0.6573 | 0.8716 | 0.9336 |
125
+ | No log | 18.5 | 148 | 0.7804 | 0.6950 | 0.7804 | 0.8834 |
126
+ | No log | 18.75 | 150 | 0.7638 | 0.7114 | 0.7638 | 0.8739 |
127
+ | No log | 19.0 | 152 | 0.7469 | 0.7730 | 0.7469 | 0.8642 |
128
+ | No log | 19.25 | 154 | 0.7300 | 0.7215 | 0.7300 | 0.8544 |
129
+ | No log | 19.5 | 156 | 0.7453 | 0.7329 | 0.7453 | 0.8633 |
130
+ | No log | 19.75 | 158 | 0.6881 | 0.7692 | 0.6881 | 0.8295 |
131
+ | No log | 20.0 | 160 | 0.6113 | 0.7733 | 0.6113 | 0.7818 |
132
+ | No log | 20.25 | 162 | 0.6071 | 0.7550 | 0.6071 | 0.7791 |
133
+ | No log | 20.5 | 164 | 0.6632 | 0.7625 | 0.6632 | 0.8144 |
134
+ | No log | 20.75 | 166 | 0.7326 | 0.7719 | 0.7326 | 0.8559 |
135
+ | No log | 21.0 | 168 | 0.8309 | 0.7425 | 0.8309 | 0.9115 |
136
+ | No log | 21.25 | 170 | 0.7534 | 0.7421 | 0.7534 | 0.8680 |
137
+ | No log | 21.5 | 172 | 0.7135 | 0.7285 | 0.7135 | 0.8447 |
138
+ | No log | 21.75 | 174 | 0.7754 | 0.7285 | 0.7755 | 0.8806 |
139
+ | No log | 22.0 | 176 | 0.9541 | 0.7126 | 0.9541 | 0.9768 |
140
+ | No log | 22.25 | 178 | 0.9315 | 0.7368 | 0.9315 | 0.9651 |
141
+ | No log | 22.5 | 180 | 0.7876 | 0.7226 | 0.7876 | 0.8874 |
142
+ | No log | 22.75 | 182 | 0.6750 | 0.7368 | 0.6750 | 0.8216 |
143
+ | No log | 23.0 | 184 | 0.6328 | 0.7564 | 0.6328 | 0.7955 |
144
+ | No log | 23.25 | 186 | 0.6396 | 0.7904 | 0.6396 | 0.7998 |
145
+ | No log | 23.5 | 188 | 0.7182 | 0.7719 | 0.7182 | 0.8475 |
146
+ | No log | 23.75 | 190 | 0.7450 | 0.7624 | 0.7450 | 0.8631 |
147
+ | No log | 24.0 | 192 | 0.6891 | 0.7470 | 0.6891 | 0.8301 |
148
+ | No log | 24.25 | 194 | 0.6789 | 0.7190 | 0.6789 | 0.8240 |
149
+ | No log | 24.5 | 196 | 0.7257 | 0.7044 | 0.7257 | 0.8519 |
150
+ | No log | 24.75 | 198 | 0.7577 | 0.7170 | 0.7577 | 0.8705 |
151
+ | No log | 25.0 | 200 | 0.8112 | 0.7349 | 0.8112 | 0.9007 |
152
+ | No log | 25.25 | 202 | 0.8974 | 0.7159 | 0.8974 | 0.9473 |
153
+ | No log | 25.5 | 204 | 0.8455 | 0.7239 | 0.8455 | 0.9195 |
154
+ | No log | 25.75 | 206 | 0.7418 | 0.7133 | 0.7418 | 0.8613 |
155
+ | No log | 26.0 | 208 | 0.7058 | 0.7034 | 0.7058 | 0.8401 |
156
+ | No log | 26.25 | 210 | 0.6901 | 0.7285 | 0.6901 | 0.8307 |
157
+ | No log | 26.5 | 212 | 0.6847 | 0.7448 | 0.6847 | 0.8274 |
158
+ | No log | 26.75 | 214 | 0.7672 | 0.7417 | 0.7672 | 0.8759 |
159
+ | No log | 27.0 | 216 | 0.9528 | 0.6711 | 0.9528 | 0.9761 |
160
+ | No log | 27.25 | 218 | 1.1034 | 0.6867 | 1.1034 | 1.0504 |
161
+ | No log | 27.5 | 220 | 1.0527 | 0.6790 | 1.0527 | 1.0260 |
162
+ | No log | 27.75 | 222 | 0.8446 | 0.6887 | 0.8446 | 0.9190 |
163
+ | No log | 28.0 | 224 | 0.6662 | 0.7568 | 0.6662 | 0.8162 |
164
+ | No log | 28.25 | 226 | 0.6467 | 0.7417 | 0.6467 | 0.8042 |
165
+ | No log | 28.5 | 228 | 0.6783 | 0.7285 | 0.6783 | 0.8236 |
166
+ | No log | 28.75 | 230 | 0.7425 | 0.7296 | 0.7425 | 0.8617 |
167
+ | No log | 29.0 | 232 | 0.8201 | 0.7273 | 0.8201 | 0.9056 |
168
+ | No log | 29.25 | 234 | 0.8693 | 0.6871 | 0.8693 | 0.9324 |
169
+ | No log | 29.5 | 236 | 0.8668 | 0.6933 | 0.8668 | 0.9310 |
170
+ | No log | 29.75 | 238 | 0.8399 | 0.6857 | 0.8399 | 0.9164 |
171
+ | No log | 30.0 | 240 | 0.8376 | 0.6667 | 0.8376 | 0.9152 |
172
+ | No log | 30.25 | 242 | 0.8430 | 0.6765 | 0.8430 | 0.9182 |
173
+ | No log | 30.5 | 244 | 0.8484 | 0.6567 | 0.8484 | 0.9211 |
174
+ | No log | 30.75 | 246 | 0.9014 | 0.6571 | 0.9014 | 0.9494 |
175
+ | No log | 31.0 | 248 | 0.9510 | 0.6216 | 0.9510 | 0.9752 |
176
+ | No log | 31.25 | 250 | 0.9296 | 0.6621 | 0.9296 | 0.9642 |
177
+ | No log | 31.5 | 252 | 0.8746 | 0.6906 | 0.8746 | 0.9352 |
178
+ | No log | 31.75 | 254 | 0.8408 | 0.7042 | 0.8408 | 0.9170 |
179
+ | No log | 32.0 | 256 | 0.8395 | 0.7042 | 0.8395 | 0.9162 |
180
+ | No log | 32.25 | 258 | 0.8648 | 0.7133 | 0.8648 | 0.9300 |
181
+ | No log | 32.5 | 260 | 0.8904 | 0.7013 | 0.8904 | 0.9436 |
182
+ | No log | 32.75 | 262 | 0.8704 | 0.7215 | 0.8704 | 0.9329 |
183
+ | No log | 33.0 | 264 | 0.8434 | 0.7125 | 0.8434 | 0.9184 |
184
+ | No log | 33.25 | 266 | 0.7901 | 0.7355 | 0.7901 | 0.8889 |
185
+ | No log | 33.5 | 268 | 0.7730 | 0.7059 | 0.7730 | 0.8792 |
186
+ | No log | 33.75 | 270 | 0.7916 | 0.7558 | 0.7916 | 0.8897 |
187
+ | No log | 34.0 | 272 | 0.7453 | 0.7614 | 0.7453 | 0.8633 |
188
+ | No log | 34.25 | 274 | 0.6839 | 0.7531 | 0.6839 | 0.8270 |
189
+ | No log | 34.5 | 276 | 0.6484 | 0.7595 | 0.6484 | 0.8052 |
190
+ | No log | 34.75 | 278 | 0.6428 | 0.7792 | 0.6428 | 0.8017 |
191
+ | No log | 35.0 | 280 | 0.6590 | 0.7792 | 0.6590 | 0.8118 |
192
+ | No log | 35.25 | 282 | 0.6854 | 0.75 | 0.6854 | 0.8279 |
193
+ | No log | 35.5 | 284 | 0.7148 | 0.7308 | 0.7148 | 0.8454 |
194
+ | No log | 35.75 | 286 | 0.7181 | 0.72 | 0.7181 | 0.8474 |
195
+ | No log | 36.0 | 288 | 0.7316 | 0.7413 | 0.7316 | 0.8553 |
196
+ | No log | 36.25 | 290 | 0.7589 | 0.7194 | 0.7589 | 0.8712 |
197
+ | No log | 36.5 | 292 | 0.7878 | 0.6667 | 0.7878 | 0.8876 |
198
+ | No log | 36.75 | 294 | 0.8333 | 0.6383 | 0.8333 | 0.9129 |
199
+ | No log | 37.0 | 296 | 0.8739 | 0.6667 | 0.8739 | 0.9348 |
200
+ | No log | 37.25 | 298 | 0.8382 | 0.6622 | 0.8382 | 0.9155 |
201
+ | No log | 37.5 | 300 | 0.8292 | 0.6667 | 0.8292 | 0.9106 |
202
+ | No log | 37.75 | 302 | 0.8757 | 0.6797 | 0.8757 | 0.9358 |
203
+ | No log | 38.0 | 304 | 0.8931 | 0.7152 | 0.8931 | 0.9450 |
204
+ | No log | 38.25 | 306 | 0.8570 | 0.6962 | 0.8570 | 0.9257 |
205
+ | No log | 38.5 | 308 | 0.8004 | 0.7067 | 0.8004 | 0.8947 |
206
+ | No log | 38.75 | 310 | 0.7791 | 0.7347 | 0.7791 | 0.8826 |
207
+ | No log | 39.0 | 312 | 0.7691 | 0.7234 | 0.7691 | 0.8770 |
208
+ | No log | 39.25 | 314 | 0.7870 | 0.7 | 0.7870 | 0.8871 |
209
+ | No log | 39.5 | 316 | 0.8627 | 0.6389 | 0.8627 | 0.9288 |
210
+ | No log | 39.75 | 318 | 1.0011 | 0.6463 | 1.0011 | 1.0005 |
211
+ | No log | 40.0 | 320 | 1.0803 | 0.6279 | 1.0803 | 1.0394 |
212
+ | No log | 40.25 | 322 | 1.0541 | 0.6429 | 1.0541 | 1.0267 |
213
+ | No log | 40.5 | 324 | 0.9738 | 0.6883 | 0.9738 | 0.9868 |
214
+ | No log | 40.75 | 326 | 0.9081 | 0.6573 | 0.9081 | 0.9529 |
215
+ | No log | 41.0 | 328 | 0.8634 | 0.6571 | 0.8634 | 0.9292 |
216
+ | No log | 41.25 | 330 | 0.8323 | 0.6667 | 0.8323 | 0.9123 |
217
+ | No log | 41.5 | 332 | 0.8529 | 0.6667 | 0.8529 | 0.9235 |
218
+ | No log | 41.75 | 334 | 0.9344 | 0.6710 | 0.9344 | 0.9667 |
219
+ | No log | 42.0 | 336 | 0.9701 | 0.6744 | 0.9701 | 0.9849 |
220
+ | No log | 42.25 | 338 | 0.9330 | 0.6936 | 0.9330 | 0.9659 |
221
+ | No log | 42.5 | 340 | 0.8401 | 0.6982 | 0.8401 | 0.9166 |
222
+ | No log | 42.75 | 342 | 0.7564 | 0.7152 | 0.7564 | 0.8697 |
223
+ | No log | 43.0 | 344 | 0.7163 | 0.7324 | 0.7163 | 0.8463 |
224
+ | No log | 43.25 | 346 | 0.6923 | 0.7397 | 0.6923 | 0.8320 |
225
+ | No log | 43.5 | 348 | 0.6946 | 0.7397 | 0.6946 | 0.8334 |
226
+ | No log | 43.75 | 350 | 0.7274 | 0.7432 | 0.7274 | 0.8529 |
227
+ | No log | 44.0 | 352 | 0.7840 | 0.6755 | 0.7840 | 0.8855 |
228
+ | No log | 44.25 | 354 | 0.8335 | 0.6835 | 0.8335 | 0.9130 |
229
+ | No log | 44.5 | 356 | 0.8199 | 0.6842 | 0.8199 | 0.9055 |
230
+ | No log | 44.75 | 358 | 0.7618 | 0.6757 | 0.7618 | 0.8728 |
231
+ | No log | 45.0 | 360 | 0.7104 | 0.7310 | 0.7104 | 0.8429 |
232
+ | No log | 45.25 | 362 | 0.7011 | 0.7310 | 0.7011 | 0.8373 |
233
+ | No log | 45.5 | 364 | 0.7156 | 0.7310 | 0.7156 | 0.8459 |
234
+ | No log | 45.75 | 366 | 0.7226 | 0.7383 | 0.7226 | 0.8501 |
235
+ | No log | 46.0 | 368 | 0.7422 | 0.7260 | 0.7422 | 0.8615 |
236
+ | No log | 46.25 | 370 | 0.7725 | 0.7260 | 0.7725 | 0.8789 |
237
+ | No log | 46.5 | 372 | 0.7951 | 0.7183 | 0.7951 | 0.8917 |
238
+ | No log | 46.75 | 374 | 0.8282 | 0.6434 | 0.8282 | 0.9101 |
239
+ | No log | 47.0 | 376 | 0.8098 | 0.7183 | 0.8098 | 0.8999 |
240
+ | No log | 47.25 | 378 | 0.8133 | 0.7183 | 0.8133 | 0.9019 |
241
+ | No log | 47.5 | 380 | 0.8545 | 0.625 | 0.8545 | 0.9244 |
242
+ | No log | 47.75 | 382 | 0.8564 | 0.6483 | 0.8564 | 0.9254 |
243
+ | No log | 48.0 | 384 | 0.8308 | 0.6714 | 0.8308 | 0.9115 |
244
+ | No log | 48.25 | 386 | 0.8471 | 0.6713 | 0.8471 | 0.9204 |
245
+ | No log | 48.5 | 388 | 0.8963 | 0.6755 | 0.8963 | 0.9467 |
246
+ | No log | 48.75 | 390 | 0.8905 | 0.6974 | 0.8905 | 0.9437 |
247
+ | No log | 49.0 | 392 | 0.8342 | 0.6763 | 0.8342 | 0.9134 |
248
+ | No log | 49.25 | 394 | 0.7968 | 0.6809 | 0.7968 | 0.8926 |
249
+ | No log | 49.5 | 396 | 0.7416 | 0.6857 | 0.7416 | 0.8612 |
250
+ | No log | 49.75 | 398 | 0.7071 | 0.6857 | 0.7071 | 0.8409 |
251
+ | No log | 50.0 | 400 | 0.7058 | 0.7333 | 0.7058 | 0.8401 |
252
+ | No log | 50.25 | 402 | 0.7424 | 0.7590 | 0.7424 | 0.8617 |
253
+ | No log | 50.5 | 404 | 0.8203 | 0.7251 | 0.8203 | 0.9057 |
254
+ | No log | 50.75 | 406 | 0.8369 | 0.7159 | 0.8369 | 0.9148 |
255
+ | No log | 51.0 | 408 | 0.7750 | 0.7296 | 0.7750 | 0.8803 |
256
+ | No log | 51.25 | 410 | 0.6908 | 0.7083 | 0.6908 | 0.8311 |
257
+ | No log | 51.5 | 412 | 0.6735 | 0.7123 | 0.6735 | 0.8207 |
258
+ | No log | 51.75 | 414 | 0.6765 | 0.7310 | 0.6765 | 0.8225 |
259
+ | No log | 52.0 | 416 | 0.6957 | 0.7123 | 0.6957 | 0.8341 |
260
+ | No log | 52.25 | 418 | 0.7181 | 0.7034 | 0.7181 | 0.8474 |
261
+ | No log | 52.5 | 420 | 0.7545 | 0.6809 | 0.7545 | 0.8686 |
262
+ | No log | 52.75 | 422 | 0.7685 | 0.6809 | 0.7685 | 0.8766 |
263
+ | No log | 53.0 | 424 | 0.7685 | 0.6809 | 0.7685 | 0.8767 |
264
+ | No log | 53.25 | 426 | 0.7834 | 0.6809 | 0.7834 | 0.8851 |
265
+ | No log | 53.5 | 428 | 0.7866 | 0.6809 | 0.7866 | 0.8869 |
266
+ | No log | 53.75 | 430 | 0.7943 | 0.6809 | 0.7943 | 0.8913 |
267
+ | No log | 54.0 | 432 | 0.7823 | 0.6809 | 0.7823 | 0.8845 |
268
+ | No log | 54.25 | 434 | 0.7731 | 0.6809 | 0.7731 | 0.8793 |
269
+ | No log | 54.5 | 436 | 0.7726 | 0.6809 | 0.7726 | 0.8790 |
270
+ | No log | 54.75 | 438 | 0.7837 | 0.6906 | 0.7837 | 0.8853 |
271
+ | No log | 55.0 | 440 | 0.7969 | 0.6906 | 0.7969 | 0.8927 |
272
+ | No log | 55.25 | 442 | 0.7869 | 0.6906 | 0.7869 | 0.8870 |
273
+ | No log | 55.5 | 444 | 0.7651 | 0.7075 | 0.7651 | 0.8747 |
274
+ | No log | 55.75 | 446 | 0.7658 | 0.7075 | 0.7658 | 0.8751 |
275
+ | No log | 56.0 | 448 | 0.7854 | 0.7179 | 0.7854 | 0.8862 |
276
+ | No log | 56.25 | 450 | 0.7961 | 0.75 | 0.7961 | 0.8922 |
277
+ | No log | 56.5 | 452 | 0.7878 | 0.7179 | 0.7878 | 0.8876 |
278
+ | No log | 56.75 | 454 | 0.7823 | 0.7179 | 0.7823 | 0.8845 |
279
+ | No log | 57.0 | 456 | 0.7646 | 0.7333 | 0.7646 | 0.8744 |
280
+ | No log | 57.25 | 458 | 0.7533 | 0.7333 | 0.7533 | 0.8679 |
281
+ | No log | 57.5 | 460 | 0.7424 | 0.7123 | 0.7424 | 0.8616 |
282
+ | No log | 57.75 | 462 | 0.7439 | 0.7075 | 0.7439 | 0.8625 |
283
+ | No log | 58.0 | 464 | 0.7773 | 0.7260 | 0.7773 | 0.8816 |
284
+ | No log | 58.25 | 466 | 0.8506 | 0.6939 | 0.8506 | 0.9223 |
285
+ | No log | 58.5 | 468 | 0.8940 | 0.6667 | 0.8940 | 0.9455 |
286
+ | No log | 58.75 | 470 | 0.8821 | 0.6803 | 0.8821 | 0.9392 |
287
+ | No log | 59.0 | 472 | 0.8346 | 0.6713 | 0.8346 | 0.9136 |
288
+ | No log | 59.25 | 474 | 0.7894 | 0.6901 | 0.7894 | 0.8885 |
289
+ | No log | 59.5 | 476 | 0.7870 | 0.6901 | 0.7870 | 0.8871 |
290
+ | No log | 59.75 | 478 | 0.7662 | 0.7297 | 0.7662 | 0.8753 |
291
+ | No log | 60.0 | 480 | 0.7498 | 0.7432 | 0.7498 | 0.8659 |
292
+ | No log | 60.25 | 482 | 0.7496 | 0.7432 | 0.7496 | 0.8658 |
293
+ | No log | 60.5 | 484 | 0.7560 | 0.7226 | 0.7560 | 0.8695 |
294
+ | No log | 60.75 | 486 | 0.7568 | 0.7226 | 0.7568 | 0.8699 |
295
+ | No log | 61.0 | 488 | 0.8036 | 0.725 | 0.8036 | 0.8965 |
296
+ | No log | 61.25 | 490 | 0.8549 | 0.7251 | 0.8549 | 0.9246 |
297
+ | No log | 61.5 | 492 | 0.8585 | 0.7251 | 0.8585 | 0.9266 |
298
+ | No log | 61.75 | 494 | 0.8543 | 0.7368 | 0.8543 | 0.9243 |
299
+ | No log | 62.0 | 496 | 0.8234 | 0.7425 | 0.8234 | 0.9074 |
300
+ | No log | 62.25 | 498 | 0.7927 | 0.7215 | 0.7927 | 0.8903 |
301
+ | 0.2908 | 62.5 | 500 | 0.7788 | 0.7105 | 0.7788 | 0.8825 |
302
+ | 0.2908 | 62.75 | 502 | 0.7619 | 0.7432 | 0.7619 | 0.8729 |
303
+ | 0.2908 | 63.0 | 504 | 0.7531 | 0.7413 | 0.7531 | 0.8678 |
304
+ | 0.2908 | 63.25 | 506 | 0.7644 | 0.7222 | 0.7644 | 0.8743 |
305
+ | 0.2908 | 63.5 | 508 | 0.7947 | 0.7172 | 0.7947 | 0.8915 |
306
+ | 0.2908 | 63.75 | 510 | 0.8359 | 0.6944 | 0.8359 | 0.9143 |
307
+ | 0.2908 | 64.0 | 512 | 0.8878 | 0.6667 | 0.8878 | 0.9422 |
308
+ | 0.2908 | 64.25 | 514 | 0.9180 | 0.6438 | 0.9180 | 0.9581 |
309
+ | 0.2908 | 64.5 | 516 | 0.8971 | 0.6667 | 0.8971 | 0.9471 |
310
+ | 0.2908 | 64.75 | 518 | 0.8721 | 0.6901 | 0.8721 | 0.9339 |
311
+
312
+
313
+ ### Framework versions
314
+
315
+ - Transformers 4.44.2
316
+ - Pytorch 2.4.0+cu118
317
+ - Datasets 2.21.0
318
+ - Tokenizers 0.19.1
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "aubmindlab/bert-base-arabertv02",
3
+ "architectures": [
4
+ "BertForSequenceClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 768,
11
+ "id2label": {
12
+ "0": "LABEL_0"
13
+ },
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "label2id": {
17
+ "LABEL_0": 0
18
+ },
19
+ "layer_norm_eps": 1e-12,
20
+ "max_position_embeddings": 512,
21
+ "model_type": "bert",
22
+ "num_attention_heads": 12,
23
+ "num_hidden_layers": 12,
24
+ "pad_token_id": 0,
25
+ "position_embedding_type": "absolute",
26
+ "problem_type": "regression",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.44.2",
29
+ "type_vocab_size": 2,
30
+ "use_cache": true,
31
+ "vocab_size": 64000
32
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0812a47f08108c42f7430a2498f916b8a49bf158392883c7350731b681a587c8
3
+ size 540799996
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:88fcc01b4444f8de1040e1b58d8ceda2648c61c5a1457bb2c70bbc994e4f6d9e
3
+ size 5304