MayBashendy commited on
Commit
9702270
·
verified ·
1 Parent(s): 5713f8c

Training in progress, step 500

Browse files
Files changed (4) hide show
  1. README.md +314 -0
  2. config.json +32 -0
  3. model.safetensors +3 -0
  4. training_args.bin +3 -0
README.md ADDED
@@ -0,0 +1,314 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ base_model: aubmindlab/bert-base-arabertv02
4
+ tags:
5
+ - generated_from_trainer
6
+ model-index:
7
+ - name: ArabicNewSplits7_OSS_usingWellWrittenEssays_FineTuningAraBERT_run1_AugV5_k6_task1_organization
8
+ results: []
9
+ ---
10
+
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
+
14
+ # ArabicNewSplits7_OSS_usingWellWrittenEssays_FineTuningAraBERT_run1_AugV5_k6_task1_organization
15
+
16
+ This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset.
17
+ It achieves the following results on the evaluation set:
18
+ - Loss: 0.7286
19
+ - Qwk: 0.7324
20
+ - Mse: 0.7286
21
+ - Rmse: 0.8536
22
+
23
+ ## Model description
24
+
25
+ More information needed
26
+
27
+ ## Intended uses & limitations
28
+
29
+ More information needed
30
+
31
+ ## Training and evaluation data
32
+
33
+ More information needed
34
+
35
+ ## Training procedure
36
+
37
+ ### Training hyperparameters
38
+
39
+ The following hyperparameters were used during training:
40
+ - learning_rate: 2e-05
41
+ - train_batch_size: 8
42
+ - eval_batch_size: 8
43
+ - seed: 42
44
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
45
+ - lr_scheduler_type: linear
46
+ - num_epochs: 100
47
+
48
+ ### Training results
49
+
50
+ | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse |
51
+ |:-------------:|:-------:|:----:|:---------------:|:------:|:------:|:------:|
52
+ | No log | 0.0444 | 2 | 6.9644 | 0.0176 | 6.9644 | 2.6390 |
53
+ | No log | 0.0889 | 4 | 5.8466 | 0.0 | 5.8466 | 2.4180 |
54
+ | No log | 0.1333 | 6 | 4.0278 | 0.0463 | 4.0278 | 2.0069 |
55
+ | No log | 0.1778 | 8 | 2.4333 | 0.0397 | 2.4333 | 1.5599 |
56
+ | No log | 0.2222 | 10 | 2.0316 | 0.2362 | 2.0316 | 1.4253 |
57
+ | No log | 0.2667 | 12 | 1.9618 | 0.1818 | 1.9618 | 1.4007 |
58
+ | No log | 0.3111 | 14 | 1.7897 | 0.1802 | 1.7897 | 1.3378 |
59
+ | No log | 0.3556 | 16 | 1.5391 | 0.1905 | 1.5391 | 1.2406 |
60
+ | No log | 0.4 | 18 | 1.3842 | 0.2936 | 1.3842 | 1.1765 |
61
+ | No log | 0.4444 | 20 | 1.3014 | 0.3793 | 1.3014 | 1.1408 |
62
+ | No log | 0.4889 | 22 | 1.3804 | 0.3363 | 1.3804 | 1.1749 |
63
+ | No log | 0.5333 | 24 | 1.5698 | 0.2037 | 1.5698 | 1.2529 |
64
+ | No log | 0.5778 | 26 | 1.4992 | 0.2435 | 1.4992 | 1.2244 |
65
+ | No log | 0.6222 | 28 | 1.4635 | 0.2975 | 1.4635 | 1.2098 |
66
+ | No log | 0.6667 | 30 | 1.3058 | 0.4590 | 1.3058 | 1.1427 |
67
+ | No log | 0.7111 | 32 | 1.1304 | 0.5366 | 1.1304 | 1.0632 |
68
+ | No log | 0.7556 | 34 | 1.1350 | 0.4500 | 1.1350 | 1.0653 |
69
+ | No log | 0.8 | 36 | 1.1498 | 0.4918 | 1.1498 | 1.0723 |
70
+ | No log | 0.8444 | 38 | 1.2305 | 0.5203 | 1.2305 | 1.1093 |
71
+ | No log | 0.8889 | 40 | 1.2776 | 0.4677 | 1.2776 | 1.1303 |
72
+ | No log | 0.9333 | 42 | 1.2250 | 0.48 | 1.2250 | 1.1068 |
73
+ | No log | 0.9778 | 44 | 1.1126 | 0.5625 | 1.1126 | 1.0548 |
74
+ | No log | 1.0222 | 46 | 1.0170 | 0.6154 | 1.0170 | 1.0085 |
75
+ | No log | 1.0667 | 48 | 0.9202 | 0.6515 | 0.9202 | 0.9593 |
76
+ | No log | 1.1111 | 50 | 1.1188 | 0.5373 | 1.1188 | 1.0577 |
77
+ | No log | 1.1556 | 52 | 1.1988 | 0.5152 | 1.1988 | 1.0949 |
78
+ | No log | 1.2 | 54 | 0.8932 | 0.6567 | 0.8932 | 0.9451 |
79
+ | No log | 1.2444 | 56 | 0.9428 | 0.6759 | 0.9428 | 0.9710 |
80
+ | No log | 1.2889 | 58 | 0.9322 | 0.6800 | 0.9322 | 0.9655 |
81
+ | No log | 1.3333 | 60 | 0.7825 | 0.7123 | 0.7825 | 0.8846 |
82
+ | No log | 1.3778 | 62 | 0.7269 | 0.7 | 0.7269 | 0.8526 |
83
+ | No log | 1.4222 | 64 | 0.7431 | 0.6765 | 0.7431 | 0.8621 |
84
+ | No log | 1.4667 | 66 | 0.8332 | 0.6269 | 0.8332 | 0.9128 |
85
+ | No log | 1.5111 | 68 | 0.8648 | 0.6619 | 0.8648 | 0.9299 |
86
+ | No log | 1.5556 | 70 | 0.8772 | 0.6812 | 0.8772 | 0.9366 |
87
+ | No log | 1.6 | 72 | 0.9398 | 0.6277 | 0.9398 | 0.9694 |
88
+ | No log | 1.6444 | 74 | 0.9532 | 0.6131 | 0.9532 | 0.9763 |
89
+ | No log | 1.6889 | 76 | 0.8581 | 0.6569 | 0.8581 | 0.9263 |
90
+ | No log | 1.7333 | 78 | 0.8617 | 0.6618 | 0.8617 | 0.9283 |
91
+ | No log | 1.7778 | 80 | 0.8907 | 0.6043 | 0.8907 | 0.9438 |
92
+ | No log | 1.8222 | 82 | 0.8763 | 0.6853 | 0.8763 | 0.9361 |
93
+ | No log | 1.8667 | 84 | 0.8664 | 0.6853 | 0.8664 | 0.9308 |
94
+ | No log | 1.9111 | 86 | 0.8817 | 0.6803 | 0.8817 | 0.9390 |
95
+ | No log | 1.9556 | 88 | 0.9417 | 0.6832 | 0.9417 | 0.9704 |
96
+ | No log | 2.0 | 90 | 0.9791 | 0.6667 | 0.9791 | 0.9895 |
97
+ | No log | 2.0444 | 92 | 0.8689 | 0.6761 | 0.8689 | 0.9321 |
98
+ | No log | 2.0889 | 94 | 0.7904 | 0.6963 | 0.7904 | 0.8891 |
99
+ | No log | 2.1333 | 96 | 0.8708 | 0.6370 | 0.8708 | 0.9332 |
100
+ | No log | 2.1778 | 98 | 0.8485 | 0.6466 | 0.8485 | 0.9211 |
101
+ | No log | 2.2222 | 100 | 0.8387 | 0.6618 | 0.8387 | 0.9158 |
102
+ | No log | 2.2667 | 102 | 0.8828 | 0.7117 | 0.8828 | 0.9395 |
103
+ | No log | 2.3111 | 104 | 0.9541 | 0.6548 | 0.9541 | 0.9768 |
104
+ | No log | 2.3556 | 106 | 0.8440 | 0.6623 | 0.8440 | 0.9187 |
105
+ | No log | 2.4 | 108 | 0.8373 | 0.7143 | 0.8373 | 0.9150 |
106
+ | No log | 2.4444 | 110 | 0.8234 | 0.7105 | 0.8234 | 0.9074 |
107
+ | No log | 2.4889 | 112 | 0.7893 | 0.7211 | 0.7893 | 0.8884 |
108
+ | No log | 2.5333 | 114 | 0.7194 | 0.7246 | 0.7194 | 0.8482 |
109
+ | No log | 2.5778 | 116 | 0.8284 | 0.6423 | 0.8284 | 0.9101 |
110
+ | No log | 2.6222 | 118 | 0.9813 | 0.5828 | 0.9813 | 0.9906 |
111
+ | No log | 2.6667 | 120 | 0.8983 | 0.7205 | 0.8983 | 0.9478 |
112
+ | No log | 2.7111 | 122 | 0.6855 | 0.7805 | 0.6855 | 0.8279 |
113
+ | No log | 2.7556 | 124 | 0.6111 | 0.7949 | 0.6111 | 0.7817 |
114
+ | No log | 2.8 | 126 | 0.6520 | 0.7564 | 0.6520 | 0.8075 |
115
+ | No log | 2.8444 | 128 | 0.6573 | 0.7564 | 0.6573 | 0.8108 |
116
+ | No log | 2.8889 | 130 | 0.7003 | 0.7582 | 0.7003 | 0.8368 |
117
+ | No log | 2.9333 | 132 | 0.7462 | 0.7260 | 0.7462 | 0.8638 |
118
+ | No log | 2.9778 | 134 | 0.9926 | 0.6846 | 0.9926 | 0.9963 |
119
+ | No log | 3.0222 | 136 | 1.1790 | 0.6133 | 1.1790 | 1.0858 |
120
+ | No log | 3.0667 | 138 | 1.1620 | 0.5733 | 1.1620 | 1.0780 |
121
+ | No log | 3.1111 | 140 | 0.9575 | 0.5942 | 0.9575 | 0.9785 |
122
+ | No log | 3.1556 | 142 | 0.8443 | 0.6963 | 0.8443 | 0.9188 |
123
+ | No log | 3.2 | 144 | 0.7929 | 0.7194 | 0.7929 | 0.8905 |
124
+ | No log | 3.2444 | 146 | 0.8021 | 0.7111 | 0.8021 | 0.8956 |
125
+ | No log | 3.2889 | 148 | 0.9820 | 0.5755 | 0.9820 | 0.9909 |
126
+ | No log | 3.3333 | 150 | 1.0694 | 0.5946 | 1.0694 | 1.0341 |
127
+ | No log | 3.3778 | 152 | 0.9193 | 0.6043 | 0.9193 | 0.9588 |
128
+ | No log | 3.4222 | 154 | 0.7319 | 0.7413 | 0.7319 | 0.8555 |
129
+ | No log | 3.4667 | 156 | 0.7342 | 0.7619 | 0.7342 | 0.8568 |
130
+ | No log | 3.5111 | 158 | 0.7317 | 0.7294 | 0.7317 | 0.8554 |
131
+ | No log | 3.5556 | 160 | 0.7380 | 0.7081 | 0.7380 | 0.8591 |
132
+ | No log | 3.6 | 162 | 0.7271 | 0.7711 | 0.7271 | 0.8527 |
133
+ | No log | 3.6444 | 164 | 0.6277 | 0.7826 | 0.6277 | 0.7923 |
134
+ | No log | 3.6889 | 166 | 0.5287 | 0.7871 | 0.5287 | 0.7271 |
135
+ | No log | 3.7333 | 168 | 0.5819 | 0.7639 | 0.5819 | 0.7628 |
136
+ | No log | 3.7778 | 170 | 0.5978 | 0.7770 | 0.5978 | 0.7732 |
137
+ | No log | 3.8222 | 172 | 0.7146 | 0.6986 | 0.7146 | 0.8454 |
138
+ | No log | 3.8667 | 174 | 0.7448 | 0.7105 | 0.7448 | 0.8630 |
139
+ | No log | 3.9111 | 176 | 0.7104 | 0.7042 | 0.7104 | 0.8429 |
140
+ | No log | 3.9556 | 178 | 0.5891 | 0.75 | 0.5891 | 0.7675 |
141
+ | No log | 4.0 | 180 | 0.5794 | 0.7297 | 0.5794 | 0.7612 |
142
+ | No log | 4.0444 | 182 | 0.5983 | 0.7595 | 0.5983 | 0.7735 |
143
+ | No log | 4.0889 | 184 | 0.6384 | 0.7485 | 0.6384 | 0.7990 |
144
+ | No log | 4.1333 | 186 | 0.7121 | 0.7229 | 0.7121 | 0.8438 |
145
+ | No log | 4.1778 | 188 | 0.6825 | 0.6806 | 0.6825 | 0.8261 |
146
+ | No log | 4.2222 | 190 | 0.7016 | 0.7050 | 0.7016 | 0.8376 |
147
+ | No log | 4.2667 | 192 | 0.7329 | 0.7143 | 0.7329 | 0.8561 |
148
+ | No log | 4.3111 | 194 | 0.7223 | 0.6759 | 0.7223 | 0.8499 |
149
+ | No log | 4.3556 | 196 | 0.7027 | 0.7545 | 0.7027 | 0.8383 |
150
+ | No log | 4.4 | 198 | 0.7252 | 0.7394 | 0.7252 | 0.8516 |
151
+ | No log | 4.4444 | 200 | 0.7440 | 0.7170 | 0.7440 | 0.8626 |
152
+ | No log | 4.4889 | 202 | 0.7155 | 0.6980 | 0.7155 | 0.8459 |
153
+ | No log | 4.5333 | 204 | 0.7180 | 0.7286 | 0.7180 | 0.8473 |
154
+ | No log | 4.5778 | 206 | 0.6719 | 0.7413 | 0.6719 | 0.8197 |
155
+ | No log | 4.6222 | 208 | 0.6452 | 0.7413 | 0.6452 | 0.8032 |
156
+ | No log | 4.6667 | 210 | 0.6789 | 0.7552 | 0.6789 | 0.8240 |
157
+ | No log | 4.7111 | 212 | 0.8317 | 0.6815 | 0.8317 | 0.9120 |
158
+ | No log | 4.7556 | 214 | 0.9312 | 0.5857 | 0.9312 | 0.9650 |
159
+ | No log | 4.8 | 216 | 0.8168 | 0.6667 | 0.8168 | 0.9038 |
160
+ | No log | 4.8444 | 218 | 0.6820 | 0.7413 | 0.6820 | 0.8259 |
161
+ | No log | 4.8889 | 220 | 0.6381 | 0.7413 | 0.6381 | 0.7988 |
162
+ | No log | 4.9333 | 222 | 0.6679 | 0.7568 | 0.6679 | 0.8173 |
163
+ | No log | 4.9778 | 224 | 0.6895 | 0.7297 | 0.6895 | 0.8303 |
164
+ | No log | 5.0222 | 226 | 0.6469 | 0.7273 | 0.6469 | 0.8043 |
165
+ | No log | 5.0667 | 228 | 0.6586 | 0.7273 | 0.6586 | 0.8116 |
166
+ | No log | 5.1111 | 230 | 0.7071 | 0.7092 | 0.7071 | 0.8409 |
167
+ | No log | 5.1556 | 232 | 0.7129 | 0.7613 | 0.7129 | 0.8443 |
168
+ | No log | 5.2 | 234 | 0.7450 | 0.7784 | 0.7450 | 0.8632 |
169
+ | No log | 5.2444 | 236 | 0.8188 | 0.7412 | 0.8188 | 0.9049 |
170
+ | No log | 5.2889 | 238 | 0.8002 | 0.7558 | 0.8002 | 0.8945 |
171
+ | No log | 5.3333 | 240 | 0.6693 | 0.7771 | 0.6693 | 0.8181 |
172
+ | No log | 5.3778 | 242 | 0.6102 | 0.7815 | 0.6102 | 0.7811 |
173
+ | No log | 5.4222 | 244 | 0.6305 | 0.7886 | 0.6305 | 0.7941 |
174
+ | No log | 5.4667 | 246 | 0.7360 | 0.7816 | 0.7360 | 0.8579 |
175
+ | No log | 5.5111 | 248 | 0.8211 | 0.7442 | 0.8211 | 0.9062 |
176
+ | No log | 5.5556 | 250 | 0.8022 | 0.7442 | 0.8022 | 0.8956 |
177
+ | No log | 5.6 | 252 | 0.7178 | 0.7665 | 0.7178 | 0.8472 |
178
+ | No log | 5.6444 | 254 | 0.7524 | 0.7456 | 0.7524 | 0.8674 |
179
+ | No log | 5.6889 | 256 | 0.9671 | 0.6629 | 0.9671 | 0.9834 |
180
+ | No log | 5.7333 | 258 | 0.9968 | 0.6630 | 0.9968 | 0.9984 |
181
+ | No log | 5.7778 | 260 | 0.8569 | 0.6577 | 0.8569 | 0.9257 |
182
+ | No log | 5.8222 | 262 | 0.7360 | 0.7164 | 0.7360 | 0.8579 |
183
+ | No log | 5.8667 | 264 | 0.6835 | 0.7445 | 0.6835 | 0.8267 |
184
+ | No log | 5.9111 | 266 | 0.6811 | 0.7391 | 0.6811 | 0.8253 |
185
+ | No log | 5.9556 | 268 | 0.6582 | 0.7391 | 0.6582 | 0.8113 |
186
+ | No log | 6.0 | 270 | 0.7265 | 0.7273 | 0.7265 | 0.8524 |
187
+ | No log | 6.0444 | 272 | 0.9302 | 0.65 | 0.9302 | 0.9645 |
188
+ | No log | 6.0889 | 274 | 0.9882 | 0.6463 | 0.9882 | 0.9941 |
189
+ | No log | 6.1333 | 276 | 0.8488 | 0.6713 | 0.8488 | 0.9213 |
190
+ | No log | 6.1778 | 278 | 0.7591 | 0.6619 | 0.7591 | 0.8713 |
191
+ | No log | 6.2222 | 280 | 0.6992 | 0.7101 | 0.6992 | 0.8362 |
192
+ | No log | 6.2667 | 282 | 0.7180 | 0.7361 | 0.7180 | 0.8473 |
193
+ | No log | 6.3111 | 284 | 0.8310 | 0.6905 | 0.8310 | 0.9116 |
194
+ | No log | 6.3556 | 286 | 0.7521 | 0.7619 | 0.7521 | 0.8673 |
195
+ | No log | 6.4 | 288 | 0.6129 | 0.8050 | 0.6129 | 0.7829 |
196
+ | No log | 6.4444 | 290 | 0.5031 | 0.7733 | 0.5031 | 0.7093 |
197
+ | No log | 6.4889 | 292 | 0.4980 | 0.8 | 0.4980 | 0.7057 |
198
+ | No log | 6.5333 | 294 | 0.4949 | 0.7895 | 0.4949 | 0.7035 |
199
+ | No log | 6.5778 | 296 | 0.5210 | 0.7949 | 0.5210 | 0.7218 |
200
+ | No log | 6.6222 | 298 | 0.7239 | 0.8023 | 0.7239 | 0.8508 |
201
+ | No log | 6.6667 | 300 | 1.0043 | 0.7143 | 1.0043 | 1.0022 |
202
+ | No log | 6.7111 | 302 | 1.0954 | 0.6701 | 1.0954 | 1.0466 |
203
+ | No log | 6.7556 | 304 | 0.9581 | 0.7083 | 0.9581 | 0.9788 |
204
+ | No log | 6.8 | 306 | 0.6942 | 0.7702 | 0.6942 | 0.8332 |
205
+ | No log | 6.8444 | 308 | 0.5785 | 0.7429 | 0.5785 | 0.7606 |
206
+ | No log | 6.8889 | 310 | 0.5941 | 0.7536 | 0.5941 | 0.7708 |
207
+ | No log | 6.9333 | 312 | 0.5905 | 0.7626 | 0.5905 | 0.7684 |
208
+ | No log | 6.9778 | 314 | 0.6186 | 0.7639 | 0.6186 | 0.7865 |
209
+ | No log | 7.0222 | 316 | 0.7591 | 0.7162 | 0.7591 | 0.8713 |
210
+ | No log | 7.0667 | 318 | 0.8375 | 0.6839 | 0.8375 | 0.9151 |
211
+ | No log | 7.1111 | 320 | 0.7892 | 0.6933 | 0.7892 | 0.8883 |
212
+ | No log | 7.1556 | 322 | 0.6434 | 0.7376 | 0.6434 | 0.8021 |
213
+ | No log | 7.2 | 324 | 0.6012 | 0.7482 | 0.6012 | 0.7754 |
214
+ | No log | 7.2444 | 326 | 0.6189 | 0.7660 | 0.6189 | 0.7867 |
215
+ | No log | 7.2889 | 328 | 0.6699 | 0.76 | 0.6699 | 0.8185 |
216
+ | No log | 7.3333 | 330 | 0.6419 | 0.8176 | 0.6419 | 0.8012 |
217
+ | No log | 7.3778 | 332 | 0.5733 | 0.8101 | 0.5733 | 0.7572 |
218
+ | No log | 7.4222 | 334 | 0.5893 | 0.8101 | 0.5893 | 0.7677 |
219
+ | No log | 7.4667 | 336 | 0.6595 | 0.7975 | 0.6595 | 0.8121 |
220
+ | No log | 7.5111 | 338 | 0.7545 | 0.7514 | 0.7545 | 0.8686 |
221
+ | No log | 7.5556 | 340 | 0.7228 | 0.7514 | 0.7228 | 0.8502 |
222
+ | No log | 7.6 | 342 | 0.6614 | 0.7368 | 0.6614 | 0.8133 |
223
+ | No log | 7.6444 | 344 | 0.6248 | 0.7867 | 0.6248 | 0.7905 |
224
+ | No log | 7.6889 | 346 | 0.5947 | 0.7755 | 0.5947 | 0.7712 |
225
+ | No log | 7.7333 | 348 | 0.6049 | 0.7785 | 0.6049 | 0.7778 |
226
+ | No log | 7.7778 | 350 | 0.6631 | 0.7226 | 0.6631 | 0.8143 |
227
+ | No log | 7.8222 | 352 | 0.7567 | 0.7305 | 0.7567 | 0.8699 |
228
+ | No log | 7.8667 | 354 | 0.7371 | 0.7134 | 0.7371 | 0.8586 |
229
+ | No log | 7.9111 | 356 | 0.6441 | 0.7429 | 0.6441 | 0.8025 |
230
+ | No log | 7.9556 | 358 | 0.5969 | 0.7552 | 0.5969 | 0.7726 |
231
+ | No log | 8.0 | 360 | 0.5695 | 0.7639 | 0.5695 | 0.7546 |
232
+ | No log | 8.0444 | 362 | 0.5560 | 0.7703 | 0.5560 | 0.7456 |
233
+ | No log | 8.0889 | 364 | 0.5890 | 0.7927 | 0.5890 | 0.7675 |
234
+ | No log | 8.1333 | 366 | 0.6475 | 0.7791 | 0.6475 | 0.8047 |
235
+ | No log | 8.1778 | 368 | 0.6235 | 0.7771 | 0.6235 | 0.7896 |
236
+ | No log | 8.2222 | 370 | 0.6260 | 0.7586 | 0.6260 | 0.7912 |
237
+ | No log | 8.2667 | 372 | 0.6075 | 0.7552 | 0.6075 | 0.7794 |
238
+ | No log | 8.3111 | 374 | 0.6036 | 0.7552 | 0.6036 | 0.7769 |
239
+ | No log | 8.3556 | 376 | 0.6166 | 0.7552 | 0.6166 | 0.7853 |
240
+ | No log | 8.4 | 378 | 0.6589 | 0.7671 | 0.6589 | 0.8117 |
241
+ | No log | 8.4444 | 380 | 0.6377 | 0.7724 | 0.6377 | 0.7986 |
242
+ | No log | 8.4889 | 382 | 0.6361 | 0.7568 | 0.6361 | 0.7976 |
243
+ | No log | 8.5333 | 384 | 0.6478 | 0.7778 | 0.6478 | 0.8049 |
244
+ | No log | 8.5778 | 386 | 0.7592 | 0.7417 | 0.7592 | 0.8713 |
245
+ | No log | 8.6222 | 388 | 0.8548 | 0.7219 | 0.8548 | 0.9246 |
246
+ | No log | 8.6667 | 390 | 0.8035 | 0.7529 | 0.8035 | 0.8964 |
247
+ | No log | 8.7111 | 392 | 0.7422 | 0.7421 | 0.7422 | 0.8615 |
248
+ | No log | 8.7556 | 394 | 0.7430 | 0.7421 | 0.7430 | 0.8620 |
249
+ | No log | 8.8 | 396 | 0.7626 | 0.7692 | 0.7626 | 0.8733 |
250
+ | No log | 8.8444 | 398 | 0.7732 | 0.7248 | 0.7732 | 0.8793 |
251
+ | No log | 8.8889 | 400 | 0.7399 | 0.7248 | 0.7399 | 0.8602 |
252
+ | No log | 8.9333 | 402 | 0.7304 | 0.7467 | 0.7304 | 0.8546 |
253
+ | No log | 8.9778 | 404 | 0.7048 | 0.7234 | 0.7048 | 0.8396 |
254
+ | No log | 9.0222 | 406 | 0.6704 | 0.7429 | 0.6704 | 0.8188 |
255
+ | No log | 9.0667 | 408 | 0.7057 | 0.7324 | 0.7057 | 0.8400 |
256
+ | No log | 9.1111 | 410 | 0.7443 | 0.6849 | 0.7443 | 0.8627 |
257
+ | No log | 9.1556 | 412 | 0.7891 | 0.6533 | 0.7891 | 0.8883 |
258
+ | No log | 9.2 | 414 | 0.8352 | 0.7168 | 0.8352 | 0.9139 |
259
+ | No log | 9.2444 | 416 | 0.8213 | 0.7345 | 0.8213 | 0.9063 |
260
+ | No log | 9.2889 | 418 | 0.7802 | 0.7957 | 0.7802 | 0.8833 |
261
+ | No log | 9.3333 | 420 | 0.6525 | 0.7882 | 0.6525 | 0.8078 |
262
+ | No log | 9.3778 | 422 | 0.5403 | 0.7871 | 0.5403 | 0.7350 |
263
+ | No log | 9.4222 | 424 | 0.5181 | 0.7922 | 0.5181 | 0.7198 |
264
+ | No log | 9.4667 | 426 | 0.5185 | 0.7843 | 0.5185 | 0.7201 |
265
+ | No log | 9.5111 | 428 | 0.5396 | 0.7671 | 0.5396 | 0.7346 |
266
+ | No log | 9.5556 | 430 | 0.5667 | 0.8 | 0.5667 | 0.7528 |
267
+ | No log | 9.6 | 432 | 0.5746 | 0.8 | 0.5746 | 0.7580 |
268
+ | No log | 9.6444 | 434 | 0.5354 | 0.7871 | 0.5354 | 0.7317 |
269
+ | No log | 9.6889 | 436 | 0.5508 | 0.7895 | 0.5508 | 0.7421 |
270
+ | No log | 9.7333 | 438 | 0.6119 | 0.7619 | 0.6119 | 0.7823 |
271
+ | No log | 9.7778 | 440 | 0.7244 | 0.7194 | 0.7244 | 0.8511 |
272
+ | No log | 9.8222 | 442 | 0.7713 | 0.7194 | 0.7713 | 0.8782 |
273
+ | No log | 9.8667 | 444 | 0.7466 | 0.7246 | 0.7466 | 0.8641 |
274
+ | No log | 9.9111 | 446 | 0.6507 | 0.7376 | 0.6507 | 0.8066 |
275
+ | No log | 9.9556 | 448 | 0.5988 | 0.7838 | 0.5988 | 0.7738 |
276
+ | No log | 10.0 | 450 | 0.5908 | 0.7838 | 0.5908 | 0.7686 |
277
+ | No log | 10.0444 | 452 | 0.6128 | 0.7838 | 0.6128 | 0.7828 |
278
+ | No log | 10.0889 | 454 | 0.6264 | 0.7483 | 0.6264 | 0.7914 |
279
+ | No log | 10.1333 | 456 | 0.7072 | 0.7673 | 0.7072 | 0.8410 |
280
+ | No log | 10.1778 | 458 | 0.8015 | 0.7273 | 0.8015 | 0.8952 |
281
+ | No log | 10.2222 | 460 | 0.7929 | 0.7342 | 0.7929 | 0.8904 |
282
+ | No log | 10.2667 | 462 | 0.7369 | 0.7429 | 0.7369 | 0.8585 |
283
+ | No log | 10.3111 | 464 | 0.6891 | 0.7391 | 0.6891 | 0.8301 |
284
+ | No log | 10.3556 | 466 | 0.6930 | 0.7361 | 0.6930 | 0.8325 |
285
+ | No log | 10.4 | 468 | 0.7418 | 0.7453 | 0.7418 | 0.8613 |
286
+ | No log | 10.4444 | 470 | 0.8353 | 0.7251 | 0.8353 | 0.9139 |
287
+ | No log | 10.4889 | 472 | 0.8099 | 0.7719 | 0.8099 | 0.9000 |
288
+ | No log | 10.5333 | 474 | 0.7766 | 0.7730 | 0.7766 | 0.8813 |
289
+ | No log | 10.5778 | 476 | 0.7498 | 0.7805 | 0.7498 | 0.8659 |
290
+ | No log | 10.6222 | 478 | 0.7712 | 0.7578 | 0.7712 | 0.8782 |
291
+ | No log | 10.6667 | 480 | 0.7483 | 0.7595 | 0.7483 | 0.8650 |
292
+ | No log | 10.7111 | 482 | 0.7699 | 0.75 | 0.7699 | 0.8775 |
293
+ | No log | 10.7556 | 484 | 0.7291 | 0.7702 | 0.7291 | 0.8539 |
294
+ | No log | 10.8 | 486 | 0.7359 | 0.7702 | 0.7359 | 0.8578 |
295
+ | No log | 10.8444 | 488 | 0.7860 | 0.7702 | 0.7860 | 0.8866 |
296
+ | No log | 10.8889 | 490 | 0.7609 | 0.7662 | 0.7609 | 0.8723 |
297
+ | No log | 10.9333 | 492 | 0.6908 | 0.7376 | 0.6908 | 0.8311 |
298
+ | No log | 10.9778 | 494 | 0.6741 | 0.7518 | 0.6741 | 0.8210 |
299
+ | No log | 11.0222 | 496 | 0.6780 | 0.7518 | 0.6780 | 0.8234 |
300
+ | No log | 11.0667 | 498 | 0.7113 | 0.7484 | 0.7113 | 0.8434 |
301
+ | 0.3785 | 11.1111 | 500 | 0.6916 | 0.7342 | 0.6916 | 0.8316 |
302
+ | 0.3785 | 11.1556 | 502 | 0.6894 | 0.7237 | 0.6894 | 0.8303 |
303
+ | 0.3785 | 11.2 | 504 | 0.6521 | 0.7338 | 0.6521 | 0.8076 |
304
+ | 0.3785 | 11.2444 | 506 | 0.6557 | 0.7338 | 0.6557 | 0.8098 |
305
+ | 0.3785 | 11.2889 | 508 | 0.7014 | 0.7153 | 0.7014 | 0.8375 |
306
+ | 0.3785 | 11.3333 | 510 | 0.7286 | 0.7324 | 0.7286 | 0.8536 |
307
+
308
+
309
+ ### Framework versions
310
+
311
+ - Transformers 4.44.2
312
+ - Pytorch 2.4.0+cu118
313
+ - Datasets 2.21.0
314
+ - Tokenizers 0.19.1
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "aubmindlab/bert-base-arabertv02",
3
+ "architectures": [
4
+ "BertForSequenceClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 768,
11
+ "id2label": {
12
+ "0": "LABEL_0"
13
+ },
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "label2id": {
17
+ "LABEL_0": 0
18
+ },
19
+ "layer_norm_eps": 1e-12,
20
+ "max_position_embeddings": 512,
21
+ "model_type": "bert",
22
+ "num_attention_heads": 12,
23
+ "num_hidden_layers": 12,
24
+ "pad_token_id": 0,
25
+ "position_embedding_type": "absolute",
26
+ "problem_type": "regression",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.44.2",
29
+ "type_vocab_size": 2,
30
+ "use_cache": true,
31
+ "vocab_size": 64000
32
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:59d5180efadcb7724d5ee8cb6084df5c6d56c4dc64538310b565a0dd1677026d
3
+ size 540799996
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:73af59e306b48fa91ce841e28e740dd842f8c19df3324d6404962e9a65bc71b3
3
+ size 5304